20.已知函數(shù)g(x)的圖象與函數(shù)f(x)=log3x(x>0)的圖象關(guān)于直線y=x對稱,若g(a)•g(b)=9(其中a>0且b>0),則$\frac{1}{a}$+$\frac{4}$的最小值為$\frac{9}{2}$.

分析 由關(guān)于直線y=x對稱的兩函數(shù)的特點:互為反函數(shù),可得g(x)=3x,由指數(shù)的運算性質(zhì)可得a+b=2,(a,b>0),則$\frac{1}{a}$+$\frac{4}$=$\frac{1}{2}$(a+b)($\frac{1}{a}$+$\frac{4}$)=$\frac{1}{2}$(1+4+$\frac{a}$+$\frac{4a}$),再由基本不等式可得最小值.

解答 解:函數(shù)g(x)的圖象與函數(shù)f(x)=log3x(x>0)的圖象關(guān)于直線y=x對稱,
可得g(x)為f(x)的反函數(shù),且為g(x)=3x
由g(a)•g(b)=9(其中a>0且b>0),
可得3a•3b=9,即有a+b=2(a,b>0),
則$\frac{1}{a}$+$\frac{4}$=$\frac{1}{2}$(a+b)($\frac{1}{a}$+$\frac{4}$)=$\frac{1}{2}$(1+4+$\frac{a}$+$\frac{4a}$)
≥$\frac{1}{2}$(5+2$\sqrt{\frac{a}•\frac{4a}}$)=$\frac{1}{2}$×(5+4)=$\frac{9}{2}$.
當(dāng)且僅當(dāng)b=2a=$\frac{4}{3}$時取得最小值$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.

點評 本題考查關(guān)于直線y=x對稱的兩函數(shù)的特點:互為反函數(shù),考查基本不等式的運用:求最值,注意運用乘1法和滿足的條件:一正二定三等,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.任取一個3位正整數(shù)n,則對數(shù)log2n是一個正整數(shù)的概率為( 。
A.$\frac{1}{300}$B.$\frac{1}{425}$C.$\frac{1}{450}$D.$\frac{1}{128}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}的前n項和為Sn,若S8=8,a3=4.則$\frac{{3{a_n}-{S_n}}}{n}$的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:log2x<1解集為{x|x<2},命題q:ln$\frac{1}{2}$<sin$\frac{1}{2}$<$\frac{1}{2}$,則( 。
A.p∨¬q為真B.p∨q為真C.¬p∧¬q為真D.p∧q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b∈N+)的兩個焦點分別為F1,F(xiàn)2,P為雙曲線上一點,|OP|<5,若|PF1|,|F1F2|,|PF2|成等比數(shù)列,則雙曲線的方程為(  )
A.$\frac{x^2}{4}$-y2=1B.$\frac{x^2}{4}$-$\frac{y^2}{2}$=1C.$\frac{x^2}{4}$-$\frac{y^2}{3}$=1D.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四邊形ABCD為等腰梯形,PD⊥平面ABCD,F(xiàn)為PC的中點,CD=AD=PD,AB=4AE=2CD.
(Ⅰ)求證:EF⊥PC;
(Ⅱ)求平面PAD與平面PCB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)α、β、γ均為實數(shù).
(1)證明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.
(2)若α+β+γ=0.證明:|cosα|+|cosβ|+|cosγ|≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=1+2sinθ}\end{array}\right.$ (θ為參數(shù)),則曲線的直角坐標(biāo)方程為( 。
A.(x-1)2+y2=2B.(x-1)2+y2=4C.x2+(y-1)2=2D.x2+(y-1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|x=3n+1,n∈N},B={4,6,8,10,12},則集合A∩B中的元素個數(shù)( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案