12.已知函數(shù)f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x,m∈R.
(Ⅰ)當(dāng)m=$\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)+g(x)≤mx-1恒成立,求整數(shù)m的最小值.

分析 (Ⅰ)先求函數(shù)的定義域,然后求導(dǎo),通過導(dǎo)數(shù)大于零得到增區(qū)間;
(Ⅱ)關(guān)于x的不等式f(x)+g(x)≤mx-1恒成立,即為lnx-$\frac{1}{2}$mx2+(1-m)x+1≤0恒成立,令h(x)=lnx-$\frac{1}{2}$mx2+(1-m)x+1,求得導(dǎo)數(shù),求得單調(diào)區(qū)間,討論m的符號,由最大值小于等于0,通過分析即可得到m的最小值.

解答 解:(Ⅰ)當(dāng)m=$\frac{1}{2}$時(shí),f(x)=lnx-$\frac{1}{2}$x2,(x>0),
由f′(x)=$\frac{1}{x}$-x=$\frac{1{-x}^{2}}{x}$>0,得x<1,又∵x>0,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1).
(Ⅱ)關(guān)于x的不等式F(x)≤mx-1恒成立,
即為lnx-$\frac{1}{2}$mx2+(1-m)x+1≤0恒成立,
令h(x)=lnx-$\frac{1}{2}$mx2+(1-m)x+1,
h′(x)=$\frac{1}{x}$-mx+1-m=$\frac{-{mx}^{2}+(1-m)x+1}{x}$,
當(dāng)m≤0可得h′(x)>0恒成立,h(x)遞增,無最大值,不成立;
當(dāng)m>0時(shí),h′(x)=$\frac{-m(x+1)(x-\frac{1}{m})}{x}$,
當(dāng)x>$\frac{1}{m}$,h′(x)<0,h(x)遞減,當(dāng)0<x<$\frac{1}{m}$,h′(x)>0,h(x)遞增,
則有x=$\frac{1}{m}$取得極大值,且為最大值.
由恒成立思想可得ln$\frac{1}{m}$-$\frac{1}{2m}$+$\frac{1}{m}$≤0,
即為2mlnm≥1,
顯然m=1不成立,m=2時(shí),4ln2≥1即有24≥e成立.
整數(shù)m的最小值為2.

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的基本思路,不等式恒成立問題轉(zhuǎn)化為函數(shù)最值問題來解的方法.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+2alnx+(a+2)x,a∈R
(1)討論函數(shù)f(x)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,對任意的x1,x2∈(0,1)且x1≠x2,有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-2lnx+a(a∈R),g(x)=-x2+3x-4.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)a=0,直線x=t與f(x),g(x)的圖象分別交于點(diǎn)M、N,當(dāng)|MN|達(dá)到最小值時(shí),求t的值;
(3)若對于任意x∈(m,n)(其中n-m≥1),兩個(gè)函數(shù)圖象分別位于直線l:x-y+s=0的兩側(cè)(與直線l無公共點(diǎn)),則稱這兩個(gè)函數(shù)存在“EN通道”.試探究:f(x)與g(x)是否存在“EN通道”,若存在,求出x的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\overrightarrow{a}$=(m,1),$\overrightarrow$=(2,-3),若滿足$\overrightarrow{a}⊥\overrightarrow$,則m=( 。
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF=$\frac{1}{2}$.則下列結(jié)論中正確的個(gè)數(shù)為(  )
①AC⊥BE;
②EF∥平面ABCD;
③三棱錐A-BEF的體積為定值;
④△AEF的面積與△BEF的面積相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.①設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,由an=2n-1,求出S${\;}_{1}={1}^{2}$,S${\;}_{2}={2}^{2}$,S${\;}_{3}={3}^{2}$,…,推斷:S${\;}_{n}={n}^{2}$;②由圓x2+y2=r2的面積S=πr2,推斷:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的面積S=πab.則①②兩個(gè)推理依次是( 。
A.歸納推理,類比推理B.演繹推理,類比推理
C.類比推理,演繹推理D.歸納推理,演繹推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)f(x)=Asin(ωx-$\frac{π}{3}$)+2(A>0,ω>0)的最大值為4,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈(0,π),則f($\frac{α}{2}$)=3,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的函數(shù)f(x)滿足:f(x)>1-f′(x),f(0)=4,則不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1(其中e為自然對數(shù)的底數(shù))的解集為( 。
A.(3,+∞)B.(-∞,0)∪(3,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.一只螞蟻在一直角邊長為1m的等腰直角三角形ABC(∠B=90°)內(nèi)隨機(jī)爬行,則螞蟻距A點(diǎn)不超過1m的概率為$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案