已知f(x)=
1
2
lnx-
1
2e2
x(e為自然對數(shù)的底),g(x)=x-
a
x
(a>0).若對任意x1,x2∈[2,2e2]都有g(shù)(x1)≥f(x2),則實數(shù)a的取值范圍為
 
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:分別求出f(x),g(x)的導(dǎo)數(shù),判斷它們的單調(diào)性,求出極值,得到它們的最大值和最小值,由于對任意x1,x2∈[2,2e2]都有g(shù)(x1)≥f(x2),則只要g(x1)的最小值≥f(x2)的最大值,解不等式即可得到a的范圍.
解答: 解:g(x)=x-
a
x
(a>0)的導(dǎo)數(shù)為g′(x)=1+
a
x2
>0,
則g(x)在[2,2e2]上遞增,即有g(shù)(2)最小,且為2-
a
2
,
又f(x)=
1
2
lnx-
1
2e2
x,其導(dǎo)數(shù)f′(x)=
1
2x
-
1
2e2
,
令f′(x)=0,得x=e2∈[2,2e2],且在x=e2處導(dǎo)數(shù)左正右負,
為極大值點,也為最大值點,
則f(x)的最大值為f(e2)=
1
2
×2-
1
2e2
×e2=
1
2

由于對任意x1,x2∈[2,2e2]都有g(shù)(x1)≥f(x2),
則只要g(x1)的最小值≥f(x2)的最大值,
即有2-
a
2
1
2
,解得0<a≤3.
故答案為:(0,3].
點評:本題考查導(dǎo)數(shù)的運用:求極值和最值,考查不等式的恒成立問題轉(zhuǎn)化為求函數(shù)的最值,考查運算能力,屬于中檔題和易錯題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

由集合A={0,2}所有真子集為元素構(gòu)成的集合為M,則M=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α⊥平面β,α∩β=l,A∈α,B∈β,AC⊥l,垂足為C,BD⊥l,垂足為D(點C,D不重合),若AC>BD,則( 。
A、AD>BC,∠ABC>∠BAD
B、AD>BC,∠ABC<∠BAD
C、AD<BC,∠ABC>∠BAD
D、AD<BC,∠ABC<∠BAD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意的實數(shù)x、y都有f(x+y)=f(x)+f(y)-1,且當x>0時,f(x)>1.
(Ⅰ)求證:函數(shù)f(x)在R上是增函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x2-ax+5a)<f(m)的解集為{x|-3<x<2},求m的值.
(Ⅲ)若f(1)=2,求f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,右焦點為F(1,0),A,B是橢圓的左、右頂點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)直線AP與直線x=2交于點D.試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2x+1
+a是奇函數(shù).
(1)求a的值;
(2)求f(x)的值域;
(3)f(m2-2)+f(m)>0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)定義在(0,+∞)的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足2f(x)+xf′(x)>x2.若a,b,c滿足a=22.2•f(21.1),b=(log32)2•f(log32),c=(log23)2•f(log23),則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、b<a<c
C、c<a<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=(2m+1)x+m-3
(1)若函數(shù)圖象經(jīng)過原點,求m的值
(2)若這個函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點,以線段F1F2為邊作正三角形MF1F2,若邊MF1的中點在雙曲線上,則雙曲線的離心率是( 。
A、4+2
3
B、
3
+1
C、
3
-1
D、
3
+1
2

查看答案和解析>>

同步練習冊答案