【題目】如圖,四邊形ABCD是邊長為1的正方形,MD⊥ABCD,NB⊥ABCD.且MD=NB=1.則下列結(jié)論中:
①MC⊥AN
②DB∥平面AMN
③平面CMN⊥平面AMN
④平面DCM∥平面ABN
所有假命題的個數(shù)是( )
A.0B.1C.2D.3
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點F為圓C:的圓心.
求拋物線的方程與其準(zhǔn)線方程;
直線l與圓C相切,交拋物線于A,B兩點;
若線段AB中點的縱坐標(biāo)為,求直線l的方程;
求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓C過點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C的右焦點的直線l與橢圓C交于A、B兩點,且與圓:交于E、F兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(5分)《九章算術(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )
A. 1升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)若不過原點的直線與橢圓相交于兩點,與直線相交于點,且是線段的中點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,分別為棱的中點.
(1)在上確定點M,使平面,并說明理由。
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com