分析 根據(jù)定義得出φ(A,B)的解析式,利用基本不等式求出最大值.
解答 解:kA-kB=(e${\;}^{{x}_{1}}$+1)-(e${\;}^{{x}_{2}}$+1)=e${\;}^{{x}_{1}}$-e${\;}^{{x}_{2}}$=e${\;}^{{x}_{2}}$(e-1),
|AB|2=(x1-x2)2+(y1-y2)2=(x1-x2)2+[(e${\;}^{{x}_{1}}$-e${\;}^{{x}_{2}}$)+(x1-x2)]2=1+[e${\;}^{{x}_{2}}$(e-1)+1]2
=e${\;}^{2{x}_{2}}$(e-1)2+2e${\;}^{{x}_{2}}$(e-1)+2,
∴φ(A,B)=$\frac{{e}^{{x}_{2}}(e-1)}{{e}^{2{x}_{2}}(e-1)^{2}+2{e}^{{x}_{2}}(e-1)+2}$=$\frac{1}{{e}^{{x}_{2}}(e-1)+\frac{2}{{e}^{{x}_{2}}(e-1)}+2}$≤$\frac{1}{2\sqrt{2}+2}$=$\frac{\sqrt{2}-1}{2}$,
當(dāng)且僅當(dāng)e${\;}^{{x}_{2}}$(e-1)=$\frac{2}{{e}^{{x}_{2}}(e-1)}$即x2=ln$\frac{\sqrt{2}}{e-1}$時(shí)取等號(hào).
故答案為:$\frac{\sqrt{2}-1}{2}$.
點(diǎn)評(píng) 本題考查了函數(shù)最值的計(jì)算,基本不等式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com