如圖是指數(shù)函數(shù)①y=ax②y=bx③y=cx④y=dx的圖象,則a,b,c,d與1的大小關(guān)系是( 。
A、c<d<1<a<b
B、d<c<1<b<a
C、c<d<1<b<a
D、1<c<d<a<b
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:有指數(shù)函數(shù)的單調(diào)性分析得到a,b大于1,c,d大于0小于1,再通過取x=1得到具體的大小關(guān)系.
解答: 解:∵當(dāng)?shù)讛?shù)大于1時(shí)指數(shù)函數(shù)是定義域內(nèi)的增函數(shù),當(dāng)?shù)讛?shù)大于0小于1時(shí)是定義域內(nèi)的減函數(shù),
可知a,b大于1,c,d大于0小于1.
又由圖可知a1>b1,即a>b.d1<c1,即d<c.
∴a,b,c,d與1的大小關(guān)系是d<c<1<b<a.
故選:B.
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)的圖象和性質(zhì),考查了指數(shù)函數(shù)的單調(diào)性,訓(xùn)練了特值思想方法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則將y=f(x)的圖象向左平移
π
6
個(gè)單位后,得到g(x)的圖象解析式為(  )
A、g(x)=sin2x
B、g(x)=cos2x
C、g(x)=sin(2x+
3
D、g(x)=sin(2x-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(
1+x2
-x)則( 。
A、f(x)是定義域?yàn)椋?1,1)的偶函數(shù)
B、f(x)是定義域?yàn)镽的偶函數(shù)
C、f(x)是定義域?yàn)椋?1,1)的奇函數(shù)
D、f(x)是定義域?yàn)镽的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x||x+1|≤2},B={x|x-a>0},若A∪B=B,則a的取值范圍是( 。
A、(-∞,-3)
B、(-3,1)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓的方程為(x-1)2+(y-2)2=4,該圓圓心到直線y=x-2的距離為( 。
A、
6
2
B、
3
6
2
C、
2
2
D、
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-1,g(x)=
x
-1,則f[g(x)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x|≤1,x∈R},B={x|x≥0,x∈R},則A∩B=(  )
A、{x|-1≤x≤1}
B、{x|x≥0}
C、{x|0≤x≤1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|5-x≥
2(x-1)
},B={x|x2-ax≤x-a},當(dāng)A?B時(shí),a的范圍是( 。
A、a>3
B、0≤a≤3
C、3<a<9
D、a>9或a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD的兩條對(duì)角線AC與BD交于E,O是任意一點(diǎn),求證:
OA
+
OB
+
OC
+
OD
=4
OE

查看答案和解析>>

同步練習(xí)冊(cè)答案