分析 (I)由三角函數(shù)公式化簡(jiǎn)可得f(x)=2sin(2x+$\frac{π}{6}$),再由函數(shù)圖象變換可得g(x)=2sin(4x+$\frac{5π}{6}$),解不等式2kπ-$\frac{π}{2}$≤4x+$\frac{5π}{6}$≤2kπ+$\frac{π}{2}$可得函數(shù)g(x)的單調(diào)遞增區(qū)間;
(Ⅱ)由x∈[-$\frac{π}{6}$,-$\frac{π}{24}$],結(jié)合三角函數(shù)的性質(zhì)可得最值.
解答 解:(I)由三角函數(shù)公式化簡(jiǎn)可得f(x)=2$\sqrt{3}$sinxcosx+1-2sin2x
=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
由函數(shù)圖象變換可得g(x)=2sin[4(x+$\frac{π}{6}$)+$\frac{π}{6}$)]=2sin(4x+$\frac{5π}{6}$),
由2kπ-$\frac{π}{2}$≤4x+$\frac{5π}{6}$≤2kπ+$\frac{π}{2}$可得$\frac{kπ}{2}$-$\frac{π}{3}$≤x≤$\frac{kπ}{2}$-$\frac{π}{12}$
∴函數(shù)g(x)的單調(diào)遞增區(qū)間為[$\frac{kπ}{2}$-$\frac{π}{3}$,$\frac{kπ}{2}$-$\frac{π}{12}$](k∈Z);
(Ⅱ)∵x∈[-$\frac{π}{6}$,-$\frac{π}{24}$],∴4x+$\frac{5π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
∴sin(4x+$\frac{5π}{6}$)∈[$\frac{1}{2}$,1],∴2sin(4x+$\frac{5π}{6}$)∈[1,2],
∴函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,-$\frac{π}{24}$]上的最大值為2,最小值為1.
點(diǎn)評(píng) 本題考查三角函數(shù)恒等變換,涉及函數(shù)圖象的變換和三角函數(shù)的單調(diào)性和最值,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,8) | B. | {3,5,7} | C. | {0,1,3,5,7} | D. | {1,3,5,7} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com