精英家教網 > 高中數學 > 題目詳情

【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過個國家或地區(qū)宣布進人緊急狀態(tài),部分國家或地區(qū)直接宣布封國封城,隨著國外部分活動進入停擺,全球經濟缺乏活力,一些企業(yè)開始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計表:

企業(yè)成立年份

2019

2018

2017

2016

2015

企業(yè)成立年限

1

2

3

4

5

倒閉企業(yè)數量(萬家)

5.23

4.70

3.72

3.12

2.42

倒閉企業(yè)所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根據上表,給出兩種回歸模型:

模型①:建立曲線型回歸模型,求得回歸方程為;

模型②:建立線性回歸模型.

1)根據所給的統(tǒng)計量,求模型②中關于的回歸方程;

2)根據下列表格中的數據,比較兩種模型的相關指數,并選擇擬合精度更高、更可靠的模型,預測年成立的企業(yè)中倒閉企業(yè)所占比例(結果保留整數).

回歸模型

模型①

模型②

回歸方程

參考公式:;.

參考數據:,,,,.

【答案】12.

【解析】

1)根據所給數據求出、,相應值代入參考公式即可求得回歸方程;(2)計算模型②的相關系數的平方,得模型②的相關系數的平方更大其擬合程度更好,再將代入回歸方程進行計算,求得預測值.

1)由,,可得,,

所以,

,

所以模型②中關于的回歸方程為.

2)對于回歸方程,

,

所以,

所以模型①的小于模型②,說明回歸模型②刻畫的擬合效果更好,

選擇模型②,當時,,

所以預測年成立的企業(yè)中倒閉企業(yè)所占比例為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我們打印用的A4紙的長與寬的比約為,之所以是這個比值,是因為把紙張對折,得到的新紙的長與寬之比仍約為,紙張的形狀不變.已知圓柱的母線長小于底面圓的直徑長(如圖所示),它的軸截面ABCD為一張A4紙,若點E為上底面圓上弧AB的中點,則異面直線DEAB所成的角約為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若的導函數,討論的單調性;

(2)若是自然對數的底數),求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在疫情這一特殊時期,教育行政部門部署了停課不停學的行動,全力幫助學生在線學習.復課后進行了摸底考試,某校數學教師為了調查高三學生這次摸底考試的數學成績與在線學習數學時長之間的相關關系,對在校高三學生隨機抽取45名進行調查.知道其中有25人每天在線學習數學的時長是不超過1小時的,得到了如下的等高條形圖:

1)是否有的把握認為高三學生的這次摸底考試數學成績與其在線學習時長有關;

2)將頻率視為概率,從全校高三學生這次數學成績超過120分的學生中隨機抽取10人,求抽取的10人中每天在線學習時長超過1小時的人數的數學期望與方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓與拋物線有共同的焦點,且兩曲線的公共點到的距離是它到直線 (點在此直線右側)的距離的一半.

1)求橢圓的方程;

2)設為坐標原點,直線過點且與橢圓交于兩點,以為鄰邊作平行四邊形.是否存在直線,使點落在橢圓或拋物線上?若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,證明函數在區(qū)間上有三個極值點;

2)若對于恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知直三棱柱中,底面為邊長為3的正三角形,三棱柱外接球的體積與內切球的體積比為_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,直線不過原點且不平行于坐標軸,有兩個交點,,線段的中點為

1)若,點在橢圓上,、分別為橢圓的兩個焦點,求的范圍;

2)若過點,射線與橢圓交于點,四邊形能否為平行四邊形?若能,求此時直線斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中,,,分別為,的中點是由繞直線旋轉得到,連結,,.

1)證明:平面;

2)若,棱上是否存在一點,使得?若存在,確定點 的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案