15.已知tan(α+$\frac{π}{4}$)=-2,則tanα=3,cos2α-sin2α=-$\frac{1}{2}$.

分析 由條件利用兩角和的正切公式求得tanα的值,再利用同角三角函數(shù)的基本關(guān)系,求得cos2α-sin2α的值.

解答 解:∵tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=-2,則tanα=3,∴cos2α-sin2α=$\frac{{cos}^{2}α-2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1-2tanα}{{tan}^{2}α+1}$=-$\frac{1}{2}$,
故答案為:3;$-\frac{1}{2}$.

點(diǎn)評 本題主要考查兩角和的正切公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在區(qū)間[-1,1]內(nèi)隨機(jī)取兩個(gè)實(shí)數(shù)x,y,則滿足y≥x2-1的概率是$\frac{5}{6}$ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)等比數(shù)列{an}前n項(xiàng)和為Sn,若a1+8a4=0,則$\frac{S_6}{S_3}$=(  )
A.-$\frac{65}{56}$B.$\frac{65}{56}$C.$\frac{7}{8}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.(2x-a)5的展開式中,x4的系數(shù)為-80,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等比數(shù)列{an}中,a5a10+a7a8=2×106,則lga1+lga2+…+lga14=(  )
A.42B.45C.36D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個(gè)焦點(diǎn),P(1,$\frac{{\sqrt{2}}}{2}$)是橢圓上一點(diǎn),且$\sqrt{2}$|PF1|,|F1F2|,$\sqrt{2}$|PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過點(diǎn)F2,且與橢圓C交于A、B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得$\overrightarrow{QA}$•$\overrightarrow{QB}$=-$\frac{7}{16}$恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若復(fù)數(shù)z滿足z+|z|=3-$\sqrt{3}$i,則z的實(shí)部為( 。
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)及圓O:x2+y2=a2,過點(diǎn)B(0,a)與橢圓相切的直線L交圓O于點(diǎn)A,若∠AOB=60°,則橢圓的離心率$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知一個(gè)棱長為$\sqrt{2}$的正四面體內(nèi)接于球,則該球的表面積是3π.

查看答案和解析>>

同步練習(xí)冊答案