已知點(diǎn)A(1,-2)關(guān)于直線x+ay-2=0的對(duì)稱(chēng)點(diǎn)為B(m,2),則實(shí)數(shù)a的值為
 
考點(diǎn):與直線關(guān)于點(diǎn)、直線對(duì)稱(chēng)的直線方程
專(zhuān)題:計(jì)算題,直線與圓
分析:由對(duì)稱(chēng)的特點(diǎn),AB的中點(diǎn)在對(duì)稱(chēng)軸上,AB垂直于對(duì)稱(chēng)軸,運(yùn)用中點(diǎn)坐標(biāo)公式和兩直線垂直的條件,得到方程,解出即可.
解答: 解:由對(duì)稱(chēng)的特點(diǎn),AB的中點(diǎn)在對(duì)稱(chēng)軸上,AB垂直于對(duì)稱(chēng)軸,
2-(-2)
m-1
•(-
1
a
)
=-1且
1+m
2
+
2-2
2
a-2=0
,
解得,m=3,a=2
故答案為:2.
點(diǎn)評(píng):本題考查點(diǎn)關(guān)于直線對(duì)稱(chēng)的問(wèn)題,考查中點(diǎn)坐標(biāo)公式和兩直線垂直的條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列的首項(xiàng)a1=a(a≠
1
4
),an+1=
1
2
an,n=2k
an+
1
4
,n=2k-1
(k∈N*),且bn=a2n-1-
1
4
(n∈N*).
(1)求a2,a3;
(2)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)求
lim
n→∞
(b1+b2+…+bn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=
1
4
,b=log3
8
5
,c=log5
3
,則a,b,c之間的大小關(guān)系是(  )
A、a>b>c
B、b>c>a
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩地相距12km.A車(chē)、B車(chē)先后從甲地出發(fā)勻速駛向乙地.A車(chē)從甲地到乙地需行駛15min;B車(chē)從甲地到乙地需行駛10min.若B車(chē)比A車(chē)晚出發(fā)2min:
(1)分別寫(xiě)出A、B兩車(chē)所行路程關(guān)于A車(chē)行駛時(shí)間的函數(shù)關(guān)系式;
(2)A、B兩車(chē)何時(shí)在途中相遇?相遇時(shí)距甲地多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是底面半徑為1,母線長(zhǎng)均為2的圓錐和圓柱的組合體,則該組合體的側(cè)視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>4,求證:2x>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=-
1
3
,則sin(π+α)+cos(π-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinxcosx-
3
cos(x+π)cosx
(1)求f(x)的最小正周期;  
(2)若將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變),再向右平移
π
3
個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求y=g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,二元一次不等式組
y≤x
x+y-2≤0
y≥0
所表示的平面區(qū)域的面積為( 。
A、1
B、
2
C、
1
2
D、
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案