1.已知f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{2x(-1<x<2)}\\{\frac{{x}^{2}}{2}(x≥2)}\end{array}\right.$.
(1)求f(-2),f(f(-$\frac{3}{2}$))的值;
(2)若f(a)=3,求a的值.

分析 (1)運(yùn)用分段函數(shù)的各段的解析式,計(jì)算即可得到;
(2)對(duì)a討論,由各段的解析式,解方程可得a的值.

解答 解:(1)f(-2)=-2+2=0;
f(-$\frac{3}{2}$)=-$\frac{3}{2}$+2=$\frac{1}{2}$,
f(f(-$\frac{3}{2}$))=f($\frac{1}{2}$)=2×$\frac{1}{2}$=1;
(2)若a≤-1,則a+2=3,解得a=1,舍去;
若-1<a<2時(shí),則2a=3,解得a=$\frac{3}{2}$,成立;
若a≥2時(shí),則$\frac{{a}^{2}}{2}$=3,解得a=$\sqrt{6}$,成立.
綜上可得a=$\frac{3}{2}$或a=$\sqrt{6}$.

點(diǎn)評(píng) 本題考查分段函數(shù)的運(yùn)用:求自變量的值和函數(shù)值,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+ϕ)+B,A>0,ω>0,|ϕ|<$\frac{π}{2}$在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
Asin(ωx+ϕ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)請(qǐng)求出上表中的x1、x2、x3,并直接寫出函數(shù)f(x)的解析式;
(Ⅱ)將f(x)的圖象沿x軸向右平移$\frac{2}{3}$個(gè)單位得到函數(shù)g(x),當(dāng)x∈[0,4]時(shí)其圖象的最高點(diǎn)和最低點(diǎn)分別為P,Q,求$\overrightarrow{OQ}$與$\overrightarrow{QP}$夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知$\frac{a+b}{a}$=$\frac{sinB}{sinB-sinA}$,且cos(A-B)+cosC=1-cos2C.
(1)試確定△ABC的形狀;
(2)求$\frac{a+\sqrt{3}c}$的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知角α、β的終邊互為反向延長(zhǎng)線,則α-β的終邊在( 。
A.x軸的非負(fù)半軸上B.y軸的非負(fù)半軸上C.x軸的非正半軸上D.y軸的非正半軸上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,正方形ABCD的邊長(zhǎng)為1,聯(lián)結(jié)這個(gè)正方形各邊的中點(diǎn)得到一個(gè)小正方形A1B1C1D1;又聯(lián)結(jié)這個(gè)小正方形各邊的中點(diǎn)得到一個(gè)更小的正方形A2B2C2D2;如此無(wú)限繼續(xù)下去,設(shè)各正方形的邊長(zhǎng)依大小順序構(gòu)成數(shù)列{an}.
(1)寫出a2,a3,a4;
(2)猜想數(shù)列{an}的通項(xiàng)公式,請(qǐng)說(shuō)明理由;并求出所有正方形的周長(zhǎng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.函數(shù)f(x)=ax+b,(a>0),g(x)=f(x)(x+m),f[f(x)]=16x+5.
(1)求f(x)解析式;
(2)當(dāng)x∈[1,3]時(shí),g(x)有最大值為13,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求證:$\frac{1}{2-1}+\frac{1}{{2}^{2}-1}+…+\frac{1}{{2}^{n}-1}<\frac{5}{3}(n∈{N}^{*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},0<x≤2}\\{x-1,-2<x≤0}\end{array}\right.$.
(1)求函數(shù)的定義域,值域;
(2)求f(-1),f(0),f(1);
(3)畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù)(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義{x}=x-[x],求{$\frac{2013}{2014}$}+{$\frac{201{3}^{2}}{2014}$}+{$\frac{201{3}^{3}}{2014}$}+…+{$\frac{201{3}^{2014}}{2014}$}=1007.

查看答案和解析>>

同步練習(xí)冊(cè)答案