分析 (1)利用和差化積公式和二倍角公式對cos2C+cosC=1-cos(A-B)整理求得sinAsinB=sin2C,利用正弦定理換成邊的關(guān)系,同時利用正弦定理把(b+a)(sinB-sinA)=asinB角的正弦轉(zhuǎn)化成邊的問題,然后聯(lián)立方程求得b2=a2+c2,推斷出三角形為直角三角形.
(2)利用正弦定理化簡所求式子,將C的度數(shù)代入,用A表示出B,整理后利用余弦函數(shù)的值域即可確定出范圍.
解答 解:(1)由$\frac{a+b}{a}$=$\frac{sinB}{sinB-sinA}$,可得cos2C+cosC=1-cos(A-B),
得cosC+cos(A-B)=1-cos2C,cos(A-B)-cos(A+B)=2sin2C,
即sinAsinB=sin2C,根據(jù)正弦定理,ab=c2,①,
又由正弦定理及(b+a)(sinB-sinA)=asinB可知b2-a2=ab,②,由①②得b2=a2+c2,
所以△ABC是直角三角形,且B=90°;
(2)由正弦定理化簡$\frac{a+\sqrt{3}c}$=$\frac{sinA+\sqrt{3}sinC}{sinB}$=sinA+$\sqrt{3}$sinC=sinA+$\sqrt{3}$cosA=2sin(A+60°),
∵$\frac{1}{2}$<sin(A+60°)≤1,A∈(0,$\frac{π}{2}$)即1<2sin(A+60°)≤2,
則$\frac{a+\sqrt{3}c}$的取值范圍是(1,2].
點評 本題主要考查了三角形的形狀的判斷,正弦定理的應(yīng)用.考查了學(xué)生分析問題和解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 已知F1(-4,0),F(xiàn)2(4,0),到兩點F1,F(xiàn)2的距離之和大于8的點的軌跡是橢圓 | |
B. | 已知F1(-4,0),F(xiàn)2(4,0),到兩點F1,F(xiàn)2的距離之和等于6的點的軌跡是橢圓 | |
C. | 到點F1(-4,0),F(xiàn)2(4,0)的距離之和等于從點(5,3)到F1,F(xiàn)2的距離之和的點的軌跡是橢圓 | |
D. | 到點F1(-4,0),F(xiàn)2(4.0)距離相等的點的軌跡是橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com