12.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$\frac{a+b}{a}$=$\frac{sinB}{sinB-sinA}$,且cos(A-B)+cosC=1-cos2C.
(1)試確定△ABC的形狀;
(2)求$\frac{a+\sqrt{3}c}$的范圍.

分析 (1)利用和差化積公式和二倍角公式對cos2C+cosC=1-cos(A-B)整理求得sinAsinB=sin2C,利用正弦定理換成邊的關(guān)系,同時利用正弦定理把(b+a)(sinB-sinA)=asinB角的正弦轉(zhuǎn)化成邊的問題,然后聯(lián)立方程求得b2=a2+c2,推斷出三角形為直角三角形.
(2)利用正弦定理化簡所求式子,將C的度數(shù)代入,用A表示出B,整理后利用余弦函數(shù)的值域即可確定出范圍.

解答 解:(1)由$\frac{a+b}{a}$=$\frac{sinB}{sinB-sinA}$,可得cos2C+cosC=1-cos(A-B),
得cosC+cos(A-B)=1-cos2C,cos(A-B)-cos(A+B)=2sin2C,
即sinAsinB=sin2C,根據(jù)正弦定理,ab=c2,①,
又由正弦定理及(b+a)(sinB-sinA)=asinB可知b2-a2=ab,②,由①②得b2=a2+c2,
所以△ABC是直角三角形,且B=90°;
(2)由正弦定理化簡$\frac{a+\sqrt{3}c}$=$\frac{sinA+\sqrt{3}sinC}{sinB}$=sinA+$\sqrt{3}$sinC=sinA+$\sqrt{3}$cosA=2sin(A+60°),
∵$\frac{1}{2}$<sin(A+60°)≤1,A∈(0,$\frac{π}{2}$)即1<2sin(A+60°)≤2,
則$\frac{a+\sqrt{3}c}$的取值范圍是(1,2].

點評 本題主要考查了三角形的形狀的判斷,正弦定理的應(yīng)用.考查了學(xué)生分析問題和解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)為R上的增函數(shù),且對于任意實數(shù)x,都有f[f(x)-3x]=4,則f(2015)的值為32015+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合M={x|x2-4x+3<0},N={x||x-3|≤1}.
(1)求出集合M,N;
(2)試定義一種新集合運算△,使M△N={x|1<x<2};
(3)若有P={x||$\frac{x-3.5}{x-2.5}$|≥$\frac{x-3.5}{x-2.5}$},按(2)的運算,求出(N△M)△P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法正確的是 ( 。
A.已知F1(-4,0),F(xiàn)2(4,0),到兩點F1,F(xiàn)2的距離之和大于8的點的軌跡是橢圓
B.已知F1(-4,0),F(xiàn)2(4,0),到兩點F1,F(xiàn)2的距離之和等于6的點的軌跡是橢圓
C.到點F1(-4,0),F(xiàn)2(4,0)的距離之和等于從點(5,3)到F1,F(xiàn)2的距離之和的點的軌跡是橢圓
D.到點F1(-4,0),F(xiàn)2(4.0)距離相等的點的軌跡是橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$=3,△ABC的面積S∈[$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$],則角B的取值范圍是[$\frac{3π}{4}$,$\frac{5π}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=x1nx+ax2(a∈R).
(1)若函數(shù)f(x)在(0,+∞)上為減函數(shù),求實數(shù)a的最大值;
(2)設(shè)F(x)=f(x)-xlnx-[f′(x)-2ax],試討論F(x)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知各項均不相同的等差數(shù)列{an}的前4項和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式:
(2)設(shè)Tn為數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{2x(-1<x<2)}\\{\frac{{x}^{2}}{2}(x≥2)}\end{array}\right.$.
(1)求f(-2),f(f(-$\frac{3}{2}$))的值;
(2)若f(a)=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.log99+log0.21=( 。
A.10B.9C.2D.1

查看答案和解析>>

同步練習(xí)冊答案