19.直線2x-y-5=0且與圓x2+y2=5的位置關(guān)系是( 。
A..相切B..相離C.相交D.都有可能

分析 先利用點(diǎn)到直線的距離公式求出圓心到直線的距離d,然后與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系.

解答 解:由圓的方程可知,圓心(0,0),半徑r=$\sqrt{5}$.
因?yàn)閳A心(0,0)到直線2x-y-5=0的距離d=$\frac{5}{\sqrt{5}}$=$\sqrt{5}$=r,
所以直線與圓相切.
故選:A.

點(diǎn)評(píng) 此題要求學(xué)生掌握直線與圓的位置關(guān)系的判斷方法,靈活運(yùn)用點(diǎn)到直線的距離公式化簡(jiǎn)求值,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)滿足:$f(x+3)=-\frac{1}{f(x)}$,且當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=336.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.等差數(shù)列{an}中,a2+a5=4,S7=21,則a7等于( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=2,點(diǎn)P為△ABC內(nèi)一點(diǎn),若∠BPC=90°,PB=1,則PA=(  )
A.4-$\sqrt{3}$B.$\frac{{\sqrt{7}}}{2}$C.$\sqrt{7}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,正弦曲線f(x)=sinx和余弦曲線g(x)=cosx在矩形ABCD內(nèi)交于點(diǎn)F,向矩形ABCD區(qū)域內(nèi)隨機(jī)投擲一點(diǎn),則該點(diǎn)落在陰影區(qū)域內(nèi)的概率是( 。
A.$\frac{1+\sqrt{2}}{π}$B.$\frac{1}{π}$C.$\frac{1+\sqrt{2}}{2π}$D.$\frac{1}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選20名女生作為樣本,測(cè)量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖所示.已知樣本中體重在區(qū)間(45,50]上的女生數(shù)與體重在區(qū)間(50,55]上的女生數(shù)之比為2:1.
(1)求a,b的值;
(2)從樣本中體重在區(qū)間(50,60]上的女生中隨機(jī)抽取兩人,求體重在區(qū)間(55,60]上的女生至少有一人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x+2|-2|x-1|.
(1)解不等式f(x)≥-2;
(2)對(duì)任意x∈R,都有f(x)≤x-a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a${\;}^{\frac{1}{2}}$-a${\;}^{-\frac{1}{2}}$=3,求:
①a+a-1
②a${\;}^{\frac{3}{2}}$-a${\;}^{-\frac{3}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知數(shù)列{an}中a1=8,a4=2,且滿足an+2+an=2an+1
(1)則數(shù)列{an}的通項(xiàng)公式為an=-2n+10;
(2)設(shè)Sn是數(shù)列{|an|}的前n項(xiàng)和,則Sn=$\left\{\begin{array}{l}{-{n}^{2}+10n,n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案