4.向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a$=(1,$\sqrt{3}$),|${\overrightarrow b}$|=1,|${\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.45°B.60°C.90°D.120°

分析 根據(jù)向量模長和向量數(shù)量積的關(guān)系,結(jié)合向量數(shù)量積的應(yīng)用進(jìn)行求解即可.

解答 解:∵$\overrightarrow a$=(1,$\sqrt{3}$),
∴|$\overrightarrow a$|=$\sqrt{1+3}=\sqrt{4}$=2,
∵|${\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,
∴平方得|${\overrightarrow a$|2+4|$\overrightarrow b}$|2+4${\overrightarrow a$•$\overrightarrow b}$=12,
即4+4+4${\overrightarrow a$•$\overrightarrow b}$=12,
則4${\overrightarrow a$•$\overrightarrow b}$=4,${\overrightarrow a$•$\overrightarrow b}$=1,
則cos<${\overrightarrow a$,$\overrightarrow b}$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{1}{1×2}=\frac{1}{2}$,
則<${\overrightarrow a$,$\overrightarrow b}$>=60°,
故選:B

點評 本題主要考查向量夾角的求解,利用向量數(shù)量積的公式和應(yīng)用是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,AB是圓O的直徑,點C在圓O上,矩形DCBE所在的平面垂直于圓O所在的平面,AB=4,BE=1.
(1)證明:平面ADE⊥平面ACD;
(2)當(dāng)三棱錐C-ADE的體積最大時,求直線CE與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線y2=4x,點A(1,0)B(-1,0),點M在拋物線上,則∠MBA的最大值是( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設(shè)AB=2,若H為PD上的動點,EH與平面PAD所成最大角的正切值為$\frac{\sqrt{6}}{2}$,求三棱錐B-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左頂點與拋物線  y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(-1,-1),則雙曲線的方程為( 。
A.$\frac{x^2}{16}$-$\frac{y^2}{4}$=1B.$\frac{x^2}{4}$-y2=1C.$\frac{x^2}{9}$-$\frac{y^2}{9}$=1D.$\frac{x^2}{3}$-$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知P是拋物線M:y2=4x上的任意點,過點P作圓C:(x-3)2+y2=1的兩條切線,切點分別為A,B,連CA,CB,則四邊形PACB的面積最小值時,點 P的坐標(biāo)為(1,2)或(1,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,若asinA+bsinB-csinC=$\sqrt{3}$asinB.則角C等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校分別從甲、乙、丙、丁4位學(xué)生和A、B、C、D4位老師中各隨機選取1名代表去參加地區(qū)活動.
(Ⅰ)用甲、乙、丙、丁和A、B、C、D列舉出所有可能結(jié)果;
(Ⅱ)事件T是“選出的兩人既不含學(xué)生丙也不含老師D”,求事件T發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某班從6名干部中(其中男生4人,女生2人),選3人參加學(xué)校的義務(wù)勞動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及均值;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案