一個(gè)幾何體的三視圖如圖所示,求:
(1)這個(gè)幾何體的體積  
(2)求該幾何體的表面積.
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:(1)由三視圖知幾何體的上部為半球,下部為正四棱柱,且半球的半徑為2,直四棱柱的高為3,底面正方形的邊長(zhǎng)為2.把數(shù)據(jù)代入體積公式計(jì)算;
(2)根據(jù)幾何體的表面積S=S棱錐側(cè)+S半球+S半球底面,把數(shù)據(jù)代入表面積公式計(jì)算可得答案.
解答: 解:(1)由三視圖知幾何體的上部為半球,下部為正四棱柱,且半球的半徑為2,
直四棱柱的高為3,底面正方形的邊長(zhǎng)為2.
∴幾何體的體積V=2×2×3+
2
3
×π×23=12+
16π
3
;
(2)幾何體的表面積S=S棱錐側(cè)+S半球+S半球底面
=4×2×3+2π×22+π×22=24+8π+4π=24+12π.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積與表面積,解題的關(guān)鍵是由三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(0,-1),B(2,2),C(4,-6),則
AB
AC
方向上的投影為( 。
A、
7
41
B、-
7
41
C、
7
13
D、-
7
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求直線y=x+
3
2
被曲線y=
1
2
x2截得的線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[-1,
1
2
]上,函數(shù)y=f(x)的圖象恒在直線y=2x+m的上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某漁輪在航行中不幸遇險(xiǎn),發(fā)出呼救信號(hào),我海軍艦艇在A處獲悉后,測(cè)得該漁輪在北偏東45°、距離為10海里的C處,并測(cè)得漁輪正沿南偏東75°的方向、以每小時(shí)9海里的速度向附近的小島靠攏.我海軍艦艇立即以每小時(shí)21海里的速度沿直線方向前去營(yíng)救;則艦艇靠近漁輪所需的時(shí)間是多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ是三角形的內(nèi)角,sinθ+cosθ=
1
5
,求下列各式的值.
(1)sinθ-cosθ;   
(2)tanθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)圓臺(tái)與圓柱、圓錐之間的相互聯(lián)系?
(2)一只有30°的直角三角析繞其各邊旋轉(zhuǎn)所得幾何體的是圓錐嗎?如果以斜邊上的高所在的直線為軸旋轉(zhuǎn)180°旋轉(zhuǎn)所得什么圖形?旋轉(zhuǎn)360°所得又是什么圖形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式組
x-1≥a2
x-4<2a
有解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義差集:A-B={x|x∈A且x∉B}.設(shè)函數(shù)y=x+1-
x-2
的值域?yàn)镃,則用列舉法表示差集:N-C=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案