17.自主招生聯(lián)盟成形于2009年清華大學等五校聯(lián)考,主要包括“北約”聯(lián)盟,“華約”聯(lián)盟,“卓越”聯(lián)盟和“京派”聯(lián)盟,在調(diào)查某高中學校高三學生自主招生報考的情況,得到如下結(jié)果( 。
①報考“北約”聯(lián)盟的考生,都沒報考“華約”聯(lián)盟
②報考“華約”聯(lián)盟的考生,也報考了“京派”聯(lián)盟
③報考“卓越”聯(lián)盟的考生,都沒報考“京派”聯(lián)盟
④不報考“卓越”聯(lián)盟的考生,就報考“華約”聯(lián)盟
根據(jù)上述調(diào)查結(jié)果,下述結(jié)論錯誤的是( 。
A.沒有同時報考“華約”和“卓越”聯(lián)盟的考生
B.報考“華約”和“京派”聯(lián)盟的考生一樣多
C.報考“北約”聯(lián)盟的考生也報考了“卓越”聯(lián)盟
D.報考“京派”聯(lián)盟的考生也報考了“北約”聯(lián)盟

分析 利用集合的思想,確定集合的關系,即可得出結(jié)論.

解答 解:設報考“北約”聯(lián)盟,“華約”聯(lián)盟,“京派”聯(lián)盟和“卓越”聯(lián)盟的學生分別為集合A,B,CD,則
由題意,A∩B=∅,B⊆C,D∩C=∅,CD=B,
∴A⊆D,B=C,CD=B,
選項A,B∩D=∅,正確;
選項B,B=C,正確;
選項C,A⊆D,正確,
故選:D.

點評 本題考查進行簡單的合情推理,考查學生分析解決問題的能力,正確運用集合思想是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,四邊形ABCD為正方形,PA⊥平面ABCD,且PA=AB=2,E為PD中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)求二面角B-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知點A(x1,y1),B(x2,y2),C(x2,0),D(x1,0),其中x2>0,x1>0,且${y_1}x_1^2-{x_1}+{y_1}=0$,${y_2}x_2^2-{x_2}+{y_2}=0$,若四邊形ABCD是矩形,則此矩形繞x軸旋轉(zhuǎn)一周得到的圓柱的體積的最大值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某生產(chǎn)基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示,若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述正確的是( 。 
 工作
效益
機器
1517141715
2223212020
913141210
7911911
1315141511
A.甲只能承擔第四項工作B.乙不能承擔第二項工作
C.丙可以不承擔第三項工作D.丁可以承擔第三項工作

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知底面為正方形的四棱錐P-ABCD內(nèi)接于半徑為1的球.頂點P在底面ABCD上的射影是ABCD的中心.當四棱錐P-ABCD的體積最大時,四棱錐的高為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一個幾何體的三視圖如圖所示,其中,俯視圖是半徑為2、圓心角為$\frac{π}{2}$的扇形.該幾何體的表面積是( 。
A.3π+12B.C.5π+12D.8π+12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若函數(shù)f(x)=x+1-a($\frac{x-1}{x+1}$)在x=1處取得極值,則實數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在一個2×2列聯(lián)表中,由其數(shù)據(jù)計算得K2的觀測值k=7.097,則這兩個變量間有關系的可能性為( 。
A.99%B.99.5%C.99.9%D.無關系

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若正實數(shù)x,y,z滿足x2+y2=9,x2+z2+xz=16,y2+z2+$\sqrt{3}$yz=25,則2xy+$\sqrt{3}$xz+yz=18.

查看答案和解析>>

同步練習冊答案