分析 (1)由題意求得a2=c2+3及|OF|、|OM|、|FM|,并代入$\frac{1}{{|{OF}|}}$+$\frac{1}{{|{OM}|}}$=$\frac{3e}{{|{FM}|}}$,即可求得a的值,即可求得橢圓方程;
(2)直線l的斜率存在時,設其方程為y=k(x-1),A(x1,y1),B(x2,y2),將直線方程代入橢圓方程,利用韋達定理及向量的數(shù)量積的坐標表示,結合已知條件能求出存在點N($\frac{11}{8}$,0)滿足$\overrightarrow{NA}$•$\overrightarrow{NB}$=-$\frac{135}{64}$.
解答 解:(1)由題意可知:焦點在x軸上,由a2=c2+3
∴丨OF丨=c=$\sqrt{{a}^{2}-3}$,丨OM丨=a,丨FM丨=a-c=a-$\sqrt{{a}^{2}-3}$,e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-3}}{a}$
由$\frac{1}{{|{OF}|}}$+$\frac{1}{{|{OM}|}}$=$\frac{3e}{{|{FM}|}}$,即:$\frac{1}{\sqrt{{a}^{2}-3}}$+$\frac{1}{a}$=$\frac{3×\frac{\sqrt{{a}^{2}-3}}{a}}{a-\sqrt{{a}^{2}-3}}$,
∴a[a2-(a2-3)]=3a(a2-3),解得a=2.
∴橢圓C方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由(1)可知:c=1,
當直線l的斜率存在時,設其方程為y=k(x-1),A(x1,y1),B(x2,y2),
將橢圓方程代入橢圓方程:$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=k(x-1)}\end{array}\right.$,整理得:(3+4k2)x2-8k2x+4k2-12=0,
△>0,x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
若存在定點N(m,0)滿足條件,
則有$\overrightarrow{NA}$•$\overrightarrow{NB}$=(x1-m)(x2-m)+y1y2,
=m2-m(x1+x2)+k2(x1-1)(x2-1),
=(1+k2)x1•x2-(m+k2)•(x1+x2)+k2+m2,
=$\frac{(1+{k}^{2})(4{k}^{2}-12)}{4{k}^{2}+3}$-$\frac{(m+{k}^{2})×8{k}^{2}}{4{k}^{2}+3}$+k2+m2,
=$\frac{(4{m}^{2}-8m-5){k}^{2}+3{m}^{2}-12}{4{k}^{2}+3}$,
如果要上式為定值,則必須有$\frac{4{m}^{2}-8m-5}{3{m}^{2}-12}$=$\frac{4}{3}$⇒m=$\frac{11}{8}$,
證當直線l斜率不存在時,也符合.
故存在點N($\frac{11}{8}$,0)滿足$\overrightarrow{NA}$•$\overrightarrow{NB}$=-$\frac{135}{64}$.
點評 本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,解題時要認真審題,注意韋達定理、向量的數(shù)量積及橢圓性質的合理運用,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\sqrt{3}+1$ | B. | $-\sqrt{3}-1$ | C. | $\sqrt{3}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{{2}^{2015}}$ | B. | $\frac{1}{{2}^{2016}}$ | C. | $\frac{1}{2016}$ | D. | $\frac{1}{1008}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com