19.設橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>$\sqrt{3}$)的右焦點為F,右頂點為M,且$\frac{1}{{|{OF}|}}$+$\frac{1}{{|{OM}|}}$=$\frac{3e}{{|{FM}|}}$,(其中O為原點),e為橢圓的離心率.
(1)求橢圓C方程;
(2)若過點F的直線l與C相交于A,B兩點,在x軸上是否存在點N,使得$\overrightarrow{NA}$•$\overrightarrow{NB}$為定值?如果有,求出點N的坐標及相應定值;如果沒有,請說明理由.

分析 (1)由題意求得a2=c2+3及|OF|、|OM|、|FM|,并代入$\frac{1}{{|{OF}|}}$+$\frac{1}{{|{OM}|}}$=$\frac{3e}{{|{FM}|}}$,即可求得a的值,即可求得橢圓方程;
(2)直線l的斜率存在時,設其方程為y=k(x-1),A(x1,y1),B(x2,y2),將直線方程代入橢圓方程,利用韋達定理及向量的數(shù)量積的坐標表示,結合已知條件能求出存在點N($\frac{11}{8}$,0)滿足$\overrightarrow{NA}$•$\overrightarrow{NB}$=-$\frac{135}{64}$.

解答 解:(1)由題意可知:焦點在x軸上,由a2=c2+3
∴丨OF丨=c=$\sqrt{{a}^{2}-3}$,丨OM丨=a,丨FM丨=a-c=a-$\sqrt{{a}^{2}-3}$,e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-3}}{a}$
由$\frac{1}{{|{OF}|}}$+$\frac{1}{{|{OM}|}}$=$\frac{3e}{{|{FM}|}}$,即:$\frac{1}{\sqrt{{a}^{2}-3}}$+$\frac{1}{a}$=$\frac{3×\frac{\sqrt{{a}^{2}-3}}{a}}{a-\sqrt{{a}^{2}-3}}$,
∴a[a2-(a2-3)]=3a(a2-3),解得a=2.
∴橢圓C方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由(1)可知:c=1,
當直線l的斜率存在時,設其方程為y=k(x-1),A(x1,y1),B(x2,y2),
將橢圓方程代入橢圓方程:$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=k(x-1)}\end{array}\right.$,整理得:(3+4k2)x2-8k2x+4k2-12=0,
△>0,x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
若存在定點N(m,0)滿足條件,
則有$\overrightarrow{NA}$•$\overrightarrow{NB}$=(x1-m)(x2-m)+y1y2
=m2-m(x1+x2)+k2(x1-1)(x2-1),
=(1+k2)x1•x2-(m+k2)•(x1+x2)+k2+m2,
=$\frac{(1+{k}^{2})(4{k}^{2}-12)}{4{k}^{2}+3}$-$\frac{(m+{k}^{2})×8{k}^{2}}{4{k}^{2}+3}$+k2+m2
=$\frac{(4{m}^{2}-8m-5){k}^{2}+3{m}^{2}-12}{4{k}^{2}+3}$,
如果要上式為定值,則必須有$\frac{4{m}^{2}-8m-5}{3{m}^{2}-12}$=$\frac{4}{3}$⇒m=$\frac{11}{8}$,
證當直線l斜率不存在時,也符合.
故存在點N($\frac{11}{8}$,0)滿足$\overrightarrow{NA}$•$\overrightarrow{NB}$=-$\frac{135}{64}$.

點評 本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,解題時要認真審題,注意韋達定理、向量的數(shù)量積及橢圓性質的合理運用,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.若函數(shù)f(x)=sinωx(ω>0)在區(qū)間(-$\frac{π}{4}$,$\frac{π}{3}$)上單調遞增,則ωmax=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.己知函數(shù)f(x)=2ln3x+8x,則$\underset{lim}{△x→∞}$$\frac{f(1+2△x)-f(1)}{△x}$的值為20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.sin(-$\frac{4}{3}$π)+$\sqrt{3}$cos$\frac{2}{3}$π-tan$\frac{25}{4}$π的值為( 。
A.$-\sqrt{3}+1$B.$-\sqrt{3}-1$C.$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,AD∥BC,過A、C、D三點的圓O與直線AB相切,且圓O過線段BC的中點E.
(1)求證:∠B=∠ACD;
(2)求$\frac{AC}{CD}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4. 如圖,已知AB為圓O的直徑,C為圓O上的一點,過點C作圓O的切線CD,過點A作AD⊥CD于D,交圓O于點E.
(Ⅰ)求證:∠EAC=∠OAC;
(Ⅱ)若CD=$\sqrt{3}$,DE=1,BC=2,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.直線l經過兩點A(2,3),B(4,1),則直線l的斜率為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若0<a<b<1,c>1,則( 。
A.ac>bcB.logac<logbcC.alogbc<blogacD.abc>bac

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.正項數(shù)列{an}滿足:a1=2,a2=1,且$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n}{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}$(n≥2),則此數(shù)列的第2 016項為( 。
A.$\frac{1}{{2}^{2015}}$B.$\frac{1}{{2}^{2016}}$C.$\frac{1}{2016}$D.$\frac{1}{1008}$

查看答案和解析>>

同步練習冊答案