分析 由條件利用正弦函數(shù)的單調(diào)性,求得ω的最大值.
解答 解:∵函數(shù)f(x)=sinωx(ω>0)在區(qū)間(-$\frac{π}{4}$,$\frac{π}{3}$)上單調(diào)遞增,∴$\left\{\begin{array}{l}{-\frac{π}{4}•ω≥-\frac{π}{2}}\\{\frac{π}{3}•ω≤\frac{π}{2}}\end{array}\right.$,求得ω≤$\frac{3}{2}$,
故ωmax=$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.
點評 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=|x-1| | B. | y=e-x | C. | y=ln(x+1) | D. | y=-x(x+2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com