3.已知等差數(shù)列{an}中,a4+a8+a10+a14=20,則前17項的和為85.

分析 由已知結(jié)合等差數(shù)列的性質(zhì)求得a1+a17,然后代入等差數(shù)列的前n項和得答案.

解答 解:在等差數(shù)列{an}中,由a4+a8+a10+a14=20,得2(a1+a17)=20,
∴a1+a17=10,
則${S}_{17}=\frac{({a}_{1}+{a}_{17})×17}{2}=\frac{10×17}{2}=85$.
故答案為:85.

點評 本題考查等差數(shù)列的性質(zhì),考查了等差數(shù)列的前n項和,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓 C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),直線l與橢圓C有唯一公共點M,為坐標原點),當點M坐標為$({\sqrt{3},\frac{1}{2}})$時,l的方程為$\sqrt{3}$x+2y-4=0.
(I)求橢圓C方程;
(Ⅱ)設(shè)直線l的斜率為K,M在橢圓C上移動時,作OH⊥l于H(O為坐標原點),求∠HOM最大時k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若E,F(xiàn),G,H分別在四面體的棱AB,BC,CD,AD上,且AC∥平面EFGH,則( 。
A.EF∥GHB.EH∥FGC.EH∥平面BCDD.FG∥平面ABD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a>b,ab≠0,則下列不等式中:①a2>b2;②$\frac{1}{a}<\frac{1}$;③a3>b3;④a2+b2>2ab,恒成立的不等式的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若關(guān)于x的方程$\sqrt{3}$sinx+|cosx|+a=0在區(qū)間[0,2π]內(nèi)有四個不同的解分別為x1,x2,x3,x4,則x1+x2+x3+x4的值為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知,AE是⊙O的直徑,弦BC與AE相交于D,求證:tanB•tanC=$\frac{AD}{DE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.觀察下列各式:
sin245°+cos275°+sin45°cos75°=$\frac{3}{4}$,
sin240°+cos270°+sin40°cos70°=$\frac{3}{4}$,
sin210°+cos240°+sin10°cos40°=$\frac{3}{4}$
(1)分析上述各式的共同特點,寫出能反映一般規(guī)律的等式;
(2)并對(1)的等式的正確性作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點為F1,F(xiàn)2,若雙曲線C上存在一點P,使得△PF1F2為等腰三角形,且cos∠F1PF2=$\frac{1}{4}$,則雙曲線C的離心率為(  )
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在(1-2x)7的展開式中,求:
(1)二項式系數(shù)的和;
(2)各項系數(shù)的和;
(3)奇數(shù)項的二項式系數(shù)和與偶數(shù)項的二項式系數(shù)和;
(4)奇數(shù)項系數(shù)和與偶數(shù)項系數(shù)和.

查看答案和解析>>

同步練習(xí)冊答案