9.已知方程$\frac{x^2}{m^2+n}$-$\frac{y^2}{3m^2-n}$=1表示雙曲線,且該雙曲線兩焦點間的距離為4,則n的取值范圍是( 。
A.(-1,3)B.(-1,$\sqrt{3}$)C.(0,3)D.(0,$\sqrt{3}$)

分析 由已知可得c=2,利用4=(m2+n)+(3m2-n),解得m2=1,又(m2+n)(3m2-n)>0,從而可求n的取值范圍.

解答 解:∵雙曲線兩焦點間的距離為4,∴c=2,
當(dāng)焦點在x軸上時,
可得:4=(m2+n)+(3m2-n),解得:m2=1,
∵方程$\frac{x^2}{m^2+n}$-$\frac{y^2}{3m^2-n}$=1表示雙曲線,
∴(m2+n)(3m2-n)>0,可得:(n+1)(3-n)>0,
解得:-1<n<3,即n的取值范圍是:(-1,3).
當(dāng)焦點在y軸上時,
可得:-4=(m2+n)+(3m2-n),解得:m2=-1,
無解.
故選:A.

點評 本題主要考查了雙曲線方程的應(yīng)用,考查了不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.cos(-$\frac{17}{3}$π)的值等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知θ是第一象限的角,若sin4θ+cos4θ=$\frac{5}{9}$,則sin2θ等于( 。
A.$\frac{4}{3}$B.$-\frac{2}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等比數(shù)列{an}中,各項都是正數(shù),且a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{2}}{{a}_{1}-{a}_{3}}$=( 。
A.1B.2C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.化簡:$\frac{{sin}^{2}(α-π)cos(π+α)sin(\frac{3π}{2}-α)}{tan(2π+α{)cos}^{3}(α-π)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)向量$\overrightarrow{a}$=(m,1),$\overrightarrow$=(1,2),且|$\overrightarrow{a}$+$\overrightarrow$|2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2,則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.Sn為等差數(shù)列{an}的前n項和,且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1.
(Ⅰ)求b1,b11,b101;
(Ⅱ)求數(shù)列{bn}的前1000項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓$\frac{x^2}{4}$+y2=1的焦距為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在銳角三角形ABC中,若sinA=2sinBsinC,則tanAtanBtanC的最小值是8.

查看答案和解析>>

同步練習(xí)冊答案