13.設(shè)集合S={x|x>-3},T={x|-6≤x≤1},則S∩T=( 。
A.[-6,+∞)B.(-3,+∞)C.[-6,1]D.(-3,1]

分析 根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:∵S={x|x>-3},T={x|-6≤x≤1},
∴S∩T={x|-3<x≤1}=(-3,1],
故選:D

點(diǎn)評 本題主要考查集合的基本運(yùn)算,根據(jù)交集的定義是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的一個(gè)焦點(diǎn)為($\sqrt{3}$,0),(1,$\frac{{\sqrt{3}}}{2}$)是橢圓上的一個(gè)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點(diǎn)分別為A,B,P(x0,y0)(x0≠0)是橢圓上異于A,B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線段PQ中點(diǎn),直線AM交直線l:y=-1于點(diǎn)C,N為線段BC的中點(diǎn),如果△MON的面積為$\frac{3}{2}$,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)y=f(t)是某港口水的深度關(guān)于時(shí)間t(時(shí))的函數(shù),其中0≤t≤24,下表是該港口某一天從0至24時(shí)記錄的時(shí)間t與水深y的關(guān)系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象.
根據(jù)上述數(shù)據(jù),函數(shù)y=f(t)的解析式為$y=3sin\frac{π}{6}t+12$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知不等式2xy≤ax2+y2,若對任意x∈[2,4]且y∈[1,6],該不等式恒成立,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{p}$=(2cosx,sinx),$\overrightarrow{q}$=cosx,-2cosx),函數(shù)f(x)=$\overrightarrow{p}$•$\overrightarrow{q}$-a(a∈R).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),函數(shù)f(x)的最小值是-2,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)傾斜角為60°的直線l過點(diǎn)(1,0)且與圓C:x2+y2-4x=0相交,則圓C的半徑為2;圓心到直線l的距離是$\frac{{\sqrt{3}}}{2}$;直線l被圓截得的弦長為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果兩組數(shù)x1,x2,…,xn和y1,y2,…,yn的平均數(shù)分別為$\overline{x}$和$\overline{y}$,標(biāo)準(zhǔn)差分別為s1和s2,那么合為一組數(shù)x1,x2,…,xn,y1,y2,…,yn后的平均數(shù)和標(biāo)準(zhǔn)差分別是( 。
A.$\overline{x}$+$\overline{y}$,$\frac{{{S}_{1}}^{2}+{{S}_{2}}^{2}}{2}$B.$\overline{x}$+$\overline{y}$,$\frac{\sqrt{{{S}_{1}}^{2}+{{S}_{2}}^{2}}}{2}$
C.$\frac{\overline{x}+\overline{y}}{2}$,$\frac{{{S}_{1}}^{2}+{{S}_{2}}^{2}}{2}$D.$\frac{\overline{x}+\overline{y}}{2}$,$\frac{\sqrt{{{S}_{1}}^{2}+{{S}_{2}}^{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.3e,π3,3π,e3這四個(gè)數(shù)中最大的數(shù)是3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知⊙O的方程為x2+y2=10.
(1)求直線:x=1被⊙O截的弦AB的長;
(2)求過點(diǎn)(-3,1)且與⊙O相切的直線方程.

查看答案和解析>>

同步練習(xí)冊答案