3.已知⊙O的方程為x2+y2=10.
(1)求直線:x=1被⊙O截的弦AB的長;
(2)求過點(-3,1)且與⊙O相切的直線方程.

分析 (1)x=1時,y=±3,即可求直線:x=1被⊙O截的弦AB的長;
(2)當(dāng)直線的斜率不存在時,直線方程為x=-3,不成立;當(dāng)直線的斜率存在時,設(shè)直線方程為kx-y+3k+1=0,由點到直線的距離等于半徑,建立方程,求出k,由此能求出直線方程.

解答 解:(1)x=1時,y=±3,∴直線:x=1被⊙O截的弦AB的長為6;
(2)當(dāng)直線的斜率不存在時,直線方程為x=-3,不成立;
當(dāng)直線的斜率存在時,設(shè)直線方程為y-1=k(x+3),
即kx-y+3k+1=0,
由題意,得$\frac{|3k+1|}{\sqrt{{k}^{2}+1}}$=$\sqrt{10}$,
解得k=0或6.
∴求過點(-3,1)且與⊙O相切的直線方程為y=1或6x-y+19=0.

點評 本題考查直線方程,考查直線與圓的位置關(guān)系,正確求出直線的斜率是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合S={x|x>-3},T={x|-6≤x≤1},則S∩T=(  )
A.[-6,+∞)B.(-3,+∞)C.[-6,1]D.(-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列計算曲線y=cosx(0≤x≤$\frac{3π}{2}$)與坐標軸圍成的面積:
(1)${∫}_{0}^{\frac{3π}{2}}$cosxdx,(2)3${∫}_{0}^{\frac{π}{2}}$cosxdx,(3)${∫}_{0}^{\frac{3π}{2}}$|cosx|dx,(4)面積為3.
用的方法或結(jié)果正確的是(2)、(3)、(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個與球心距離為$\sqrt{2}$的平面截球所得圓面面積為π,則球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。 
A.16B.26C.32D.20+$\frac{25}{4}\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.甲、乙、丙三人獨立破譯同一份密碼.已知甲、乙、丙各自獨立破譯出密碼的概率分別為$\frac{1}{5}$,$\frac{1}{4}$,$\frac{1}{3}$,且他們是否破譯出密碼互不影響.則恰有二人破譯出密碼的概率為$\frac{3}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列說法中正確的有③
①刻畫一組數(shù)據(jù)集中趨勢的統(tǒng)計量有極差、方差、標準差等;刻畫一組數(shù)據(jù)離散程度統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.
③有10個鬮,其中一個代表獎品,10個人按順序依次抓鬮來決定獎品的歸屬,則摸獎的順序?qū)χ歇劼蕸]有影響.
④向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過直線x+y-3=0和2x-y=0的交點,且與直線2x+y-5=0垂直的直線方程是( 。
A.4x+2y-3=0B.4x-2y+3=0C.x+2y-3=0D.x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線x-y-2=0及直線x-y-6=0截圓C所得的弦長均為10,則圓C的面積是27π.

查看答案和解析>>

同步練習(xí)冊答案