【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)以為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為,(),直線與曲線交于,兩點,求線段的長度.

【答案】(1));(2.

【解析】

1)根據(jù)參數(shù)方程,消去參數(shù),得到曲線普通方程,再由題意求出定義域即可;

2)先將(1)中的曲線方程化為極坐標方程,得到,(),設的極坐標分別為,,將代入曲線的極坐標方程,由根與系數(shù)關系,以及,即可得出結(jié)果.

1)曲線的參數(shù)方程為為參數(shù)),

將①式兩邊平方,得③,

②,得,即,

因為,當且僅當,

時取

所以,即,

所以曲線的普通方程為.

2)因為曲線的直角坐標系方程為),

所以把代入得:,(),

則曲線的極坐標方程為,(

,的極坐標分別為,,由

,即,且

因為,

滿足,不妨設

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】阿波羅尼斯(古希臘數(shù)學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為,寫出的一個阿波羅尼斯圓的標準方程__________;②△中,,則當△面積的最大值為時,______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數(shù)y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).

(Ⅰ) 求函數(shù)f(x)的表達式;

(Ⅱ) 證明:a>3,關于x的方程f(x)= f(a)有三個實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直四棱柱中,底面是邊長為6的正方形,點在線段上,且滿足,過點作直四棱柱外接球的截面,所得的截面面積的最大值與最小值之差為,則直四棱柱外接球的半徑為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,大擺錘是一種大型游樂設備,常見于各大游樂園.游客坐在圓形的座艙中,面向外.通常大擺錘以壓肩作為安全束縛,配以安全帶作為二次保險.座艙旋轉(zhuǎn)的同時,懸掛座艙的主軸在電機的驅(qū)動下做單擺運動.今年五一,小明去某游樂園玩大擺錘,他坐在點A處,大擺錘啟動后,主軸在平面內(nèi)繞點O左右擺動,平面與水平地面垂直,擺動的過程中,點A在平面內(nèi)繞點B作圓周運動,并且始終保持.已知,在大擺錘啟動后,給出下列結(jié)論:

①點A在某個定球面上運動;

②線段在水平地面上的正投影的長度為定值;

③直線與平面所成角的正弦值的最大值為

與水平地面所成角記為,直線與水平地面所成角記為,當時,為定值.

其中正確結(jié)論的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)上的兩個動點,焦點為F.線段AB的中點為,且AB兩點到拋物線的焦點F的距離之和為8.


1)求拋物線的標準方程;

2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)若a=1,且f(x)≥m(0,+∞)恒成立,求實數(shù)m的取值范圍;

2)當時,若x=0不是f(x)的極值點,求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一副撲克牌有52張(不包括大小王),求:

1)任取1張是紅桃的概率;

2)任取2張是同花色的概率;

3)任取3張,至少有2張是同花色的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.曲線的極坐標方程為,曲線與曲線的交線為直線

1)求直線和曲線的直角坐標方程;

2)直線軸交于點,與曲線相交于,兩點,求的值.

查看答案和解析>>

同步練習冊答案