【題目】已知拋物線)上的兩個動點,焦點為F.線段AB的中點為,且AB兩點到拋物線的焦點F的距離之和為8.


1)求拋物線的標準方程;

2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.

【答案】1;(2.

【解析】

1)利用拋物線的定義可得,求出的值,從而得到拋物線的方程;
2)設(shè)直線AB的方程為:,與拋物線方程聯(lián)立,利用韋達定理和弦長公式可得,利用AB的中垂線方程可得點C的坐標,再利用點到直線距離公式求出點C到直線AB的距離d,所以,令,則,利用導(dǎo)數(shù)可得最值.

1)由題意知,則,

,

∴拋物線的標準方程為;

2)設(shè)直線

,得,

,

,

,

設(shè)AB的中垂線方程為:,即,

可得點C的坐標為,

∵直線,即

∴點C到直線AB的距離,

,則,

,

,則,在;在,

單調(diào)遞增,單調(diào)遞減,

∴當,即時,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l3x+4y+m=0,圓Cx2+y24x+2=0,則圓C的半徑r=_____;若在圓C上存在兩點A,B,在直線l上存在一點P,使得∠APB=90°,則實數(shù)m的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若存在非零實數(shù),使得點,都在的圖象上,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個結(jié)論:

①函數(shù)的圖象把圓的面積兩等分

是周期為的函數(shù)

③函數(shù)在區(qū)間上有3個零點

④函數(shù)在區(qū)間上單調(diào)遞減

其中所有正確結(jié)論的編號是(

A.①③④B.②④C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為,以為折痕把折起,使點到達點的位置,且.

(Ⅰ)證明:平面平面;

(Ⅱ)若的中點,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗,廠家將一批產(chǎn)品發(fā)給商家時,商家按合同規(guī)定也需隨機抽取一定數(shù)量的產(chǎn)品做檢驗,以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進行檢驗,求至少有 件是合格品的概率;

2)若廠家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進行檢驗,只有 件都合格時才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)質(zhì)量檢驗員為了檢測生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機抽取了個零件進行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結(jié)果精確到);

2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設(shè)表示尺寸在上的零件個數(shù),求的分布列及數(shù)學期望;

3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率. 現(xiàn)對生產(chǎn)線上生產(chǎn)的零件進行成箱包裝出售,每箱. 企業(yè)在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為. 若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用. 現(xiàn)對一箱零件隨機抽檢了個,結(jié)果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據(jù),該企業(yè)是否對該箱余下的所有零件進行檢驗?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)在[0,π]上的單調(diào)遞減區(qū)間;

2)在銳角△ABC的內(nèi)角A,B,C所對邊為a,b,c,已知fA)=﹣1a2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前n項和為,且,,數(shù)列的前n項和為,且.

1)求數(shù)列,的通項公式.

2)設(shè),數(shù)列的前n項和為,求.

3)設(shè),求數(shù)列的前n項和.

查看答案和解析>>

同步練習冊答案