已知f(t)=
t
1+t
,g(t)=
t
1-t
,求證:f(t)-g(t)=-2g(t2).
考點:函數(shù)的值
專題:證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(t)、g(t),計算f(t)-g(t)與g(t2),即得結(jié)論.
解答: 證明:∵f(t)=
t
1+t
,g(t)=
t
1-t
,
∴f(t)-g(t)=
t
1+t
-
t
1-t

=
t(1-t)-t(1+t)
(1+t)(1-t)

=
-2t2
1-t2

=-2g(t2).
點評:本題考查了利用函數(shù)的值證明等式成立的問題,也是一個求函數(shù)值的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=4,b=4
3
,∠A=30°,則sinB等于( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=
1+i
1-i
+(1-i)2且滿足z2+3z+1=a+bi(a,b∈R).求(a+b)2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在研究性學(xué)習(xí)中,收集到某制藥廠車間工人數(shù)(單位:十人)與藥品產(chǎn)量(單位:萬盒)的數(shù)據(jù)如表所示:
工人數(shù):x(單位:十人)1234
藥品產(chǎn)量:y(單位:萬盒)3456
(1)請畫出如表數(shù)據(jù)的散點圖;
(2)參考公式,根據(jù)表格提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=
b
x+
a
;(參考數(shù)據(jù)
4
i=1
i2=30,
4
i=1
xiyi=50)
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測該制藥廠車間工人數(shù)為45時,藥品產(chǎn)量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:AC⊥平面BB1C1C;
(2)在A1B1上是否存在一點P,使得DP與平面BCB1平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 女性 合計
反感 10
不反感 8
合計 30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程);
(2)據(jù)此資料判斷是否有95%的把握認為反感“中國式過馬路”與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD,四邊形ABCD為正方形,且P為AD的中點,Q為SB的中點,M為BC的中點.
(1)求證:CD⊥平面SAD;
(2)求證:PQ∥平面SCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

因式分解:a5+a+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數(shù))交于A,B兩點.
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案