18.設(shè)隨機變量X服從正態(tài)分布N(4,σ2),若P(X>m)=0.3,則P(X>8-m)=( 。
A.0.2B.0.3C.0.7D.與σ的值有關(guān)

分析 根據(jù)隨機變量X服從正態(tài)分布,可知正態(tài)曲線的對稱軸,利用對稱性,即可求得P(X<8-m),從而求出P(X>8-m)即可.

解答 解:∵隨機變量X服從正態(tài)分布N(4,o2),
∴正態(tài)曲線的對稱軸是x=4,
∵P(X>m)=0.3,
而m與8-m關(guān)于x=4對稱,由正態(tài)曲線的對稱性得:
∴P(X>m)=P(X<8-m)=0.3,
故P(X>8-m)=1-0.3=0.7,
故選:C.

點評 本題主要考查正態(tài)分布曲線的特點及曲線所表示的意義、函數(shù)圖象對稱性的應(yīng)用等基礎(chǔ)知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sin(πx+φ)的部分圖象如圖所示,點B,C是該圖象與x軸的交點,過點C的直線與該圖象交于D,E兩點,則($\overrightarrow{BD}$+$\overrightarrow{BE}$)•($\overrightarrow{BE}$-$\overrightarrow{CE}$)的值為( 。
A.-1B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知α為第三象限角,$f(α)=\frac{{sin({α-\frac{π}{2}})cos({\frac{3π}{2}+α})tan({π-α})}}{{tan({-π-α})sin({-π-α})}}$
(1)化簡f(α);
(2)若$cos({α-\frac{3π}{2}})=\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點M是圓E:(x+1)2+y2=8上的動點,點F(1,0),O為坐標原點,線段MF的垂直平分線交ME于點P,則動點P的軌跡方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在梯形ABCD中,$\overrightarrow{AB}$=3$\overrightarrow{DC}$,則$\overrightarrow{BC}$等于( 。
A.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$B.-$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AD}$C.$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$D.-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某學(xué)校有2500名學(xué)生,其中高一1000人,高二900人,高三600人,為了了解學(xué)生的身體健康狀況,采用分層抽樣的方法,若從本校學(xué)生中抽取100人,從高一和高三抽取樣本數(shù)分別為a,b,且直線ax+by+8=0與以A(1,-1)為圓心的圓交于B,C兩點,且∠BAC=120°,則圓C的方程為( 。
A.(x-1)2+(y+1)2=1B.(x-1)2+(y+1)2=2C.(x-1)2+(y+1)2=$\frac{18}{17}$D.(x-1)2+(y+1)2=$\frac{12}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}-2x$
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若$a=-\frac{1}{2}$,且關(guān)于x的方程$f(x)=-\frac{1}{2}x+b$在[1,4]恰有兩個不相等的實數(shù)根,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知渡船在靜水中速度$\overrightarrow{v_2}$的大小為$(\sqrt{6}+\sqrt{2})$m/s,河水流速$\overrightarrow{v_1}$的大小為2m/s.如圖渡船船頭方向與水流方向成$\frac{π}{4}$夾角,且河面垂直寬度為$600(\sqrt{3}+1)m$.
(Ⅰ)求渡船的實際速度與水流速度的夾角;
(Ⅱ)求渡船過河所需要的時間.[提示:4+2$\sqrt{3}={(\sqrt{3}+1)^2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.為了促銷某電子產(chǎn)品,商場進行降價,設(shè)m>0,n>0,m≠n,有三種降價方案:
方案①:先降m%,再降n%;
方案②:先降$\frac{m+n}{2}%$,再降$\frac{m+n}{2}%$;
方案③:一次性降價(m+n)%.
則降價幅度最小的方案是②.(填出正確的序號)

查看答案和解析>>

同步練習(xí)冊答案