A. | 0.2 | B. | 0.3 | C. | 0.7 | D. | 與σ的值有關(guān) |
分析 根據(jù)隨機變量X服從正態(tài)分布,可知正態(tài)曲線的對稱軸,利用對稱性,即可求得P(X<8-m),從而求出P(X>8-m)即可.
解答 解:∵隨機變量X服從正態(tài)分布N(4,o2),
∴正態(tài)曲線的對稱軸是x=4,
∵P(X>m)=0.3,
而m與8-m關(guān)于x=4對稱,由正態(tài)曲線的對稱性得:
∴P(X>m)=P(X<8-m)=0.3,
故P(X>8-m)=1-0.3=0.7,
故選:C.
點評 本題主要考查正態(tài)分布曲線的特點及曲線所表示的意義、函數(shù)圖象對稱性的應(yīng)用等基礎(chǔ)知識,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$ | B. | -$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AD}$ | C. | $\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$ | D. | -$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y+1)2=1 | B. | (x-1)2+(y+1)2=2 | C. | (x-1)2+(y+1)2=$\frac{18}{17}$ | D. | (x-1)2+(y+1)2=$\frac{12}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com