【題目】20兩個(gè)數(shù)字排成7位的數(shù)碼,其中“20”“02”各至少出現(xiàn)兩次(如00200202020200、0220220等),則這樣的數(shù)碼的個(gè)數(shù)是(

A.54B.44C.32D.22

【答案】B

【解析】

共分為兩個(gè)2五個(gè)0,三個(gè)2四個(gè)0,四個(gè)2三個(gè)0,五個(gè)2兩個(gè)0,由對稱性后兩種情況的個(gè)數(shù)與前兩種一樣,所以只需考慮前兩種再乘以2

兩個(gè)2五個(gè)0時(shí),顯然兩個(gè)2不能相鄰,也不能放在首尾,先將5個(gè)0排成一排,其之間有4個(gè)空位,從這4個(gè)空位中選2個(gè)安排2,,以有種情況;

三個(gè)2四個(gè)0時(shí),可分為三個(gè)2不相鄰有,即4個(gè)0考慮首尾空位有5個(gè),從中選3個(gè)放2,有種;和222不相鄰,即4個(gè)0考慮首尾空位不安排有3個(gè)空位,從中選2個(gè)排成一排有種,所以有種情況;

故共有種情況.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐SABCD中,側(cè)面SCD為鈍角三角形且垂直于底面ABCD,CDSD,點(diǎn)MSA的中點(diǎn),AD//BC,∠ABC90°,ABADBCa

1)求證:平面MBD⊥平面SCD

2)若∠SDC120°,求三棱錐CMBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時(shí)間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時(shí)間的中位數(shù)為80

D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時(shí)間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的普通方程為:,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,正方形的頂點(diǎn)都在上,且逆時(shí)針依次排列,點(diǎn)的極坐標(biāo)為

1)寫出曲線的參數(shù)方程,及點(diǎn)的直角坐標(biāo);

2)設(shè)為橢圓上的任意一點(diǎn),求:的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份

年份代碼

線下銷售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測年該百貨零售企業(yè)的線下銷售額;

(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯誤的概率不超過的前提下認(rèn)為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)點(diǎn)是拋物線的焦點(diǎn),直線與拋物線相切于點(diǎn)(點(diǎn)位于第一象限),并與拋物線的準(zhǔn)線相交于點(diǎn).過點(diǎn)且與直線垂直的直線交拋物線于另一點(diǎn),交軸于點(diǎn),連結(jié)

1)證明:為等腰三角形;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多寓意美好的曲線,曲線被稱為四葉玫瑰線(如圖所示).

給出下列三個(gè)結(jié)論:

①曲線關(guān)于直線對稱;

②曲線上任意一點(diǎn)到原點(diǎn)的距離都不超過;

③存在一個(gè)以原點(diǎn)為中心、邊長為的正方形,使得曲線在此正方形區(qū)域內(nèi)(含邊界).

其中,正確結(jié)論的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了實(shí)施“科技下鄉(xiāng),精準(zhǔn)脫貧”戰(zhàn)略,某縣科技特派員帶著三個(gè)農(nóng)業(yè)扶貧項(xiàng)目進(jìn)駐某村,對僅有的四個(gè)貧困戶進(jìn)行產(chǎn)業(yè)幫扶.經(jīng)過前期走訪得知,這四個(gè)貧困戶甲、乙、丙、丁選擇三個(gè)項(xiàng)目的意向如下:

扶貧項(xiàng)目

貧困戶

甲、乙、丙、丁

甲、乙、丙

丙、丁

若每個(gè)貧困戶只能從自己已登記的選擇意向中隨機(jī)選取一項(xiàng),且每個(gè)項(xiàng)目至多有兩個(gè)貧困戶選擇,則甲乙兩戶選擇同一個(gè)扶貧項(xiàng)目的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是正方形,頂點(diǎn)在底面的射影是底面的中心,且各頂點(diǎn)都在同一球面上,若該四棱錐的側(cè)棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:

A. 2B. C. 4D.

查看答案和解析>>

同步練習(xí)冊答案