在△ABC中,求證:
a2+b2
c2
=
sin2A+sin2B
sin2C
考點(diǎn):正弦定理
專題:解三角形
分析:△ABC中,由正弦定理可得a=2RsinA,b=2RsinB,c=2RsinC,代入要證的等式的左邊化簡,可得等式的右邊.
解答: 解:在△ABC中,由正弦定理可得a=2RsinA,b=2RsinB,c=2RsinC,
a2+b2
c2
=
4R2sin2A+4R2sin2B
4R2sin2C
=
sin2A+sin2B
sin2C
,
a2+b2
c2
=
sin2A+sin2B
sin2C
成立.
點(diǎn)評(píng):本題主要考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C1:x2+y2-2mx+4y+m2-5=0與⊙C2:x2+y2+2x-2mx+m2-3=0.求當(dāng)m為何值時(shí),兩圓:
(1)外離;
(2)外切;
(3)相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x,y,1},B={x,x2,xy},若A=B,則x、y各為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形OAB的圓心角∠AOB=
π
3
,點(diǎn)P在圓弧
AB
上運(yùn)動(dòng),且滿足
OA
=x
OP
+y
OB
,則x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x的一元二次方程x2+4x+m=0,
(1)若此方程有兩個(gè)不同的實(shí)數(shù)解,求m的范圍;
(2)若此方程的兩個(gè)實(shí)數(shù)解分別為x1,x2,且x12+x22=18,求m的值及|x1-x2|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(a+1-x).
(1)若函數(shù)f(-x2)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若關(guān)于x的方程(x+1)10f(x)=4在(0,2)有且僅有一個(gè)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x丨x2-3x+2=0},B={x丨2x2-6x+a=0},若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中錯(cuò)誤的個(gè)數(shù)為( 。
①圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的函數(shù)是奇函數(shù);
②圖象關(guān)于y軸對(duì)稱的函數(shù)是偶函數(shù);
③奇函數(shù)的圖象一定過坐標(biāo)原點(diǎn);
④偶函數(shù)的圖象一定與y軸相交.
A、4B、3C、2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2x2+3x+m與g(x)=-x2+n的圖象有一個(gè)公共點(diǎn)(-1,-5),則不等式f(x)>g(x)的解集是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案