以兩點(diǎn)A(-3,-1)和B(5,5)為直徑端點(diǎn)的圓的方程是_________.

 

(x-1)2+(y-2)2=25

【解析】設(shè)P(x,y)是所求圓上任意一點(diǎn).∵A、B是直徑的端點(diǎn),∴·=0.又=(-3-x,-1-y),=(5-x,5-y).由·=0?(-3-x)·(5-x)+(-1-y)(5-y)=0?x2-2x+y2-4y-20=0?(x-1)2+(y-2)2=25.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:填空題

已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長(zhǎng)線交C于點(diǎn)D,且=2,則C的離心率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時(shí)練習(xí)卷(解析版) 題型:填空題

以點(diǎn)(2,-2)為圓心并且與圓x2+y2+2x-4y+1=0相外切的圓的方程是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

P(x,y)在圓C:(x-1)2+(y-1)2=1上移動(dòng),試求x2+y2的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.

(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;

(2)圓C是否過定點(diǎn)?如果過定點(diǎn),求出定點(diǎn)的坐標(biāo);如果不過定點(diǎn),說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

若動(dòng)點(diǎn)A、B分別在直線l1:x+y-7=0和l2:x+y-5=0上移動(dòng),則AB的中點(diǎn)M到原點(diǎn)的距離的最小值為______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知直線l:x+2y-2=0,試求:

(1) 點(diǎn)P(-2,-1)關(guān)于直線l的對(duì)稱點(diǎn)坐標(biāo);

(2) 直線l1:y=x-2關(guān)于直線l對(duì)稱的直線l2的方程;

(3) 直線l關(guān)于點(diǎn)(1,1)對(duì)稱的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1(,0)與定直線l1∶x=的距離之比為常數(shù).

(1)求曲線C的軌跡方程;

(2)以曲線C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求·的最小值,并求此時(shí)圓T的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練理數(shù)學(xué)卷(解析版) 題型:解答題

已知,直線為平面上的動(dòng)點(diǎn),過點(diǎn)的垂線,垂足為點(diǎn),且

(1)求動(dòng)點(diǎn)的軌跡曲線的方程;

(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),且與直線相交于點(diǎn),試探究:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案