若sin(π+α)=
3
5
,α是第三象限的角,則
sin
π+α
2
-cos
π+α
2
sin
π-α
2
-cos
π-α
2
=(  )
A、
1
2
B、-
1
2
C、2
D、-2
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:已知等式利用誘導(dǎo)公式化簡(jiǎn)求出sinα的值,根據(jù)α為第三象限角,利用同角三角函數(shù)間基本關(guān)系求出cosα的值,原式利用誘導(dǎo)公式化簡(jiǎn),整理后將各自的值代入計(jì)算即可求出值.
解答: 解:∵sin(π+α)=-sinα=
3
5
,即sinα=-
3
5
,α是第三象限的角,
∴cosα=-
4
5
,
則原式=
cos
α
2
+sin
α
2
cos
α
2
-sin
α
2
=
(cos
α
2
+sin
α
2
)
2
(cos
α
2
+sin
α
2
)(cos
α
2
-sin
α
2
)
=
1+sinα
cosα
=-
1
2
,
故選:B.
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的準(zhǔn)線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)交于A、B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),若△FAB為直角三角形,則雙曲線離心率的取值范圍是 (
5
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-
x+3
x+1
的定義域?yàn)?div id="uoptc6n" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=kx+b(k<0),且f[f(x)]=4x+1,則f(x)=(  )
A、-2x-1
B、-2x+1
C、-x+1
D、-2x-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,點(diǎn)M、N分別在線段AB1、BC1上,且AM=BN.給出下列結(jié)論:
①M(fèi)N與A1C1相交;
②MN∥A1C1;
③MN與A1C1異面,
其中有可能成立的結(jié)論的個(gè)數(shù)為(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

研究函數(shù)y=lg
1-x
1+x
的定義域和奇偶性.(寫出必要的過程和文字說明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U=﹛1,2,3,4﹜,A=﹛1,2﹜,B=﹛2,4﹜,則∁U(A∪B)=( 。
A、﹛2﹜B、﹛3﹜
C、﹛1,4﹜D、﹛1,3,4﹜

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,且a≠1,則函數(shù)y=ax-1+1的圖象一定過定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是拋物線y2=4x上的點(diǎn),設(shè)點(diǎn)P到y(tǒng)軸的距離為d1,到圓C:(x+3)2+(y-3)2=4上的動(dòng)點(diǎn)Q距離為d2,則d1+d2的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案