精英家教網 > 高中數學 > 題目詳情

【題目】已知圓,

1)若直線過定點,且與圓C相切,求的方程.

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.

【答案】1;(2.

【解析】

1)將的斜率分成存在和不存在兩種情況,結合圓心到直線的距離等于半徑,求得的方程.

2)設出圓的圓心,利用兩圓外切的條件列方程,由此求得圓心的坐標,進而求得圓的方程.

1)圓的圓心為,半徑為.當直線斜率不存在時,即直線,此時直線與圓相切.當直線斜率存在時,設直線的方程為,即,由于與圓相切,圓心到直線的距離等于半徑,即,即,解得,直線的方程為.

綜上所述,直線的方程為.

2)由于圓圓心在直線上,設圓心,圓的半徑,由于圓與圓外切,所以,即,即,解得.所以圓心.所以圓的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,正四棱錐中,為底面正方形的中心,側棱與底面所成的角的正切值為

1)求側面與底面所成的二面角的大;

2)若的中點,求異面直線所成角的正切值;

3)問在棱上是否存在一點,使⊥側面,若存在,試確定點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】5G網絡是第五代移動通信網絡,其峰值理論傳輸速度可達每81GB,比4G網絡的傳輸速度快數百倍.舉例來說,一部1G的電影可在8秒之內下載完成.隨著5G技術的誕生,用智能終端分享3D電影、游戲以及超高畫質(UHD)節(jié)目的時代正向我們走來.某手機網絡研發(fā)公司成立一個專業(yè)技術研發(fā)團隊解決各種技術問題,其中有數學專業(yè)畢業(yè),物理專業(yè)畢業(yè),其它專業(yè)畢業(yè)的各類研發(fā)人員共計1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分數對工作成績進行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).

1)從總體的1200名學生中隨機抽取1人,估計其分數小于50的概率;

2)研發(fā)公司決定對達到某分數以上的研發(fā)人員進行獎勵,要求獎勵研發(fā)人員的人數達到30%,請你估計這個分數的值;

3)已知樣本中有三分之二的數學專業(yè)畢業(yè)的研發(fā)人員分數不低于70分,樣本中不低于70分的數學專業(yè)畢業(yè)的研發(fā)人員人數與物理及其它專業(yè)畢業(yè)的研發(fā)人員的人數和相等,估計總體中數學專業(yè)畢業(yè)的研發(fā)人員的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以平面直角坐標系的原點O為極點,x軸的正半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位.曲線的極坐標方程為,曲線的參數方程為為參數).

1)求曲線的直角坐標方程及曲線的普通方程;

2)已知點,直線l的參數方程為t為參數),設直線l與曲線交于M,N兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面,,,為線段上一點,,的中點.

1)證明:平面;

2)求點到平面的距離;

3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,一動直線l過與圓相交于.兩點,中點,l與直線m:相交于.

(1)求證:當l與m垂直時,l必過圓心

(2)當時,求直線l的方程;

(3)探索是否與直線l的傾斜角有關,若無關,請求出其值;若有關,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在梯形ABCD中,DCAB,DCCB,EAB的中點,且AB=2BC=2CD=4(如圖所示),將ADE沿DE翻折,使AB=2(如圖所示),F是線段AD上一點,且AF=2DF

(Ⅰ)求四棱錐A-BCDE的體積;

(Ⅱ)在線段BE上是否存在一點G,使EF∥平面ACG?若存在,請指出點G的位置,并證明你的結論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點.

(1)求證:平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓

(1)若直線過點且被圓截得的弦長為2,求直線的方程;

(2)從圓外一點向圓引一條切線,切點為為坐標原點,滿足,求點的軌跡方程及的最小值

查看答案和解析>>

同步練習冊答案