16.設(shè)命題p:lna<0;命題q:函數(shù)$y=\sqrt{a{x^2}-x+a}$的定義域?yàn)镽.
(1)若p且q是真命題,求實(shí)數(shù)a的取值范圍;
(2)若p或q是真命題,p且q是假命題,求實(shí)數(shù)a的取值范圍.

分析 分別判斷出p,q為真時(shí)的a的范圍,再判斷出(1)p且q是真命題,(2)p或q是真命題,p且q是假命題的a的范圍即可.

解答 解:可知命題p為真命題時(shí),實(shí)數(shù)a的取值集合為P={a|0<a<1},
對(duì)于命題q:函數(shù)的定義域?yàn)镽的充要條件是ax2-x+a≥0恒成立.
當(dāng)a=0時(shí),不等式為-x≥0,解得x≤0,顯然不成立;
當(dāng)a≠0時(shí),不等式恒成立的條件是
$\left\{\begin{array}{l}{a>0}\\{△=1-{4a}^{2}≤0}\end{array}\right.$,解得a≥$\frac{1}{2}$.
所以命題q為真命題時(shí),a的取值集合為Q={a|a≥$\frac{1}{2}$}.                      
(1)若p∧q是真命題,則p真q真,
∴$\left\{\begin{array}{l}0<a<1\\ a≥\frac{1}{2}\end{array}\right.$即a的取值范圍是$\frac{1}{2}≤a<1$.
(2)由“p∨q是真命題,p∧q是假命題”,可知命題p,q一真一假,
當(dāng)p真q假時(shí),a的取值范圍是P∩(∁RQ)={a|0<a<1}∩{a|a<$\frac{1}{2}$}={a|0<a<$\frac{1}{2}$};
當(dāng)p假q真時(shí),a的取值范圍是(∁RP)∩Q={a|a≤0或a≥1}∩{a|a≥$\frac{1}{2}$}={a|a≥1}.
綜上,a的取值范圍是(0,$\frac{1}{2}$)∪[1,+∞).

點(diǎn)評(píng) 本題考查了復(fù)合命題的判斷,考查對(duì)數(shù)函數(shù)以及二次根式的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=(x2-3)ex,現(xiàn)給出下列結(jié)論:
①f(x)有極小值,但無(wú)最小值②f(x)有極大值,但無(wú)最大值
③若方程f(x)=b恰有一個(gè)實(shí)數(shù)根,則b>6e-3
④若方程f(x)=b恰有三個(gè)不同實(shí)數(shù)根,則0<b<6e-3
其中所有正確結(jié)論的序號(hào)為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=alnx+$\frac{1}{x}$-bx+1.
(Ⅰ)若2a-b=4,則當(dāng)a>2時(shí),討論f(x)的單調(diào)性;
(Ⅱ)令a≥-4,b=-1,F(xiàn)(x)=f(x)-$\frac{5}{x}$,若存在x0∈[1,4],使得不等式F(x0)≥2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.給出下列兩個(gè)命題:
命題p::若在邊長(zhǎng)為1的正方形ABCD內(nèi)任取一點(diǎn)M,則|MA|≤1的概率為$\frac{π}{4}$.命題q:設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)非零向量,則“$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}•\overrightarrow$|”是“$\overrightarrow{a}$與$\overrightarrow$共線”的充分不必要條件,那么,下列命題中為真命題的是( 。
A.p∧qB.¬pC.p∧(¬q)D.(¬p)∨(q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將函數(shù)f(x)=2cos(2x-$\frac{π}{6}}$)的圖象向左平移$\frac{π}{4}$個(gè)單位得到g(x)的圖象,記函數(shù)g(x)在區(qū)間$[{t,t+\frac{π}{4}}]$內(nèi)的最大值為Mt,最小值為mt,記ht=Mt-mt,若t∈[${\frac{π}{4}$,$\frac{π}{2}}$],則函數(shù)h(t)的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得K2≈3.918,經(jīng)查對(duì)臨界值表知P(k2≥3.841)≈0.05,對(duì)此,四名同學(xué)作出了以下的判斷:
p:在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“能起到預(yù)防感冒的作用”;
q:如果某人未使用該血清,那么他在一年中有95%的可能性得感冒;
r:這種血清預(yù)防感冒的有效率為95%;
s:這種血清預(yù)防感冒的有效率為5%.
則下列結(jié)論中,正確結(jié)論的序號(hào)是(1).
(1)p∧非q;(2)非p∧q;(3)(非p∧q)∧(r∨s);(4)(p∨非r)∧(非q∨s).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知全集U為實(shí)數(shù)集R,集合A={x|1≤x≤4},B={x|x<0或x>3}.
求:(1)∁UA;
(2)A∩B;
(3)若C={x|x>a},且A∩C=A,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)隨機(jī)變量ξ~B(2,p),隨機(jī)變量η~B(3,p),若$P(ξ≥1)=\frac{5}{9}$,則Eη=( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{19}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)1+2i,a+bi(a、b∈R,i是虛數(shù)單位)滿(mǎn)足(1+2i)(a+bi)=5+5i,則|a+bi|=( 。
A.3$\sqrt{2}$B.$\sqrt{17}$C.$\sqrt{10}$D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案