分析 (1)若a=-1,不等式f(x)≤5,即為|3x-1|≤x+2,去掉絕對值解不等式f(x)≤5;
(2)分析知函數(shù)f(x)有最小值的充要條件為$\left\{{\begin{array}{l}{3+a≥0}\\{a-3≤0}\end{array}}\right.$,即可求實(shí)數(shù)a的取值范圍.
解答 解:(1)當(dāng)a=-1時(shí),f(x)=|3x-1|+3-x,所以不等式f(x)≤5,即為|3x-1|≤x+2,討論:
當(dāng)$x≥\frac{1}{3}$時(shí),3x-1-x+3≤5,解之得$\frac{1}{3}≤x≤\frac{3}{2}$;
當(dāng)$x<\frac{1}{3}$時(shí),-3x+1-x+3≤5,解之得$-\frac{1}{4}≤x<\frac{1}{3}$,
綜上,原不等式的解集為$\left\{{x|-\frac{1}{4}≤x≤\frac{3}{2}}\right\}$…(5分)
(2)$f(x)=|{3x-1}|+ax+3=\left\{{\begin{array}{l}{({3+a})x+2,x≥\frac{1}{3}}\\{({a-3})x+4,x<\frac{1}{3}}\end{array}}\right.$,
分析知函數(shù)f(x)有最小值的充要條件為$\left\{{\begin{array}{l}{3+a≥0}\\{a-3≤0}\end{array}}\right.$,即-3≤a≤3…(10分)
點(diǎn)評 本題考查不等式的解法,考查絕對值的幾何意義,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com