9.下列敘述正確的是①②③
①{1,2}⊆{1,2};②{0}∈{{0},{1}};③滿足A⊆{a,b}的集合A有4個;④集合{x|y=x2}={y|y=x2}.

分析 利用元素與集合之間的關(guān)系、集合的運算性質(zhì)即可判斷出正誤.

解答 解:①由集合之間的關(guān)系可得{1,2}⊆{1,2},正確;
②由元素與集合之間的關(guān)系可得:{0}∈{{0},{1}},正確;
③滿足A⊆{a,b}的集合A有4個:∅,{a},,{a,b},正確;
④集合{x|y=x2}=R,{y|y=x2}=[0,+∞),因此不正確.
綜上可得:正確的是①②③.
故答案為:①②③

點評 本題考查了元素與集合之間的關(guān)系、集合的運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知四邊形ABEF為矩形,四邊形ABCD為直角梯形,平面ABEF⊥平面ABCD,∠BAD=90°,AB∥CD,AF=BC=2,CD=3,AB=4.
(1)求證:AC⊥平面BCE;
(2)求點E到平面BCF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知a,b∈R,求證:a4+b4≥$\frac{1}{2}$ab(a+b)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知:函數(shù)f(x)=|1-3x|+3+ax.
(1)若a=-1,解不等式f(x)≤5;
(2)若函數(shù)f(x)有最小值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若Sn=n2an(n≥2且n∈N*),a1=1,則an=$\frac{2}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在三棱錐P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M為PB的中點,N在BC上,且BN=$\frac{1}{3}$BC.
(1)求證:MN⊥AB;
(2)求平面MAN與平面PAN所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.當前《奔跑吧兄弟第三季》正在熱播,某校一興趣小組為研究收看《奔跑吧兄弟第三季》與年齡是否相關(guān),在某市步行街隨機抽取了110名成人進行調(diào)查,發(fā)現(xiàn)45歲及以上的被調(diào)查對象中有10人收看,有25人未收看;45歲以下的被調(diào)查對象中有50人收看,有25人未收看.
(1)試根據(jù)題設(shè)數(shù)據(jù)完成下列2×2 列聯(lián)表,并說明是否有99.9%的把握認為收看《奔跑吧兄弟第三季》與年齡有關(guān);
2×2 列聯(lián)表
收看不收看總計
45歲以上
45歲以下
總計
(2)采取分層抽樣的方法從45歲及以上的被調(diào)查對象中抽取了7人.從這7人中任意抽取2人,求至少有一人收看《奔跑吧兄弟第三季》的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.0100.0050.001
K06.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=ex-1-ax有且僅有一個零點,則a的取值范圍(-∞,0]∪{1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知正三棱錐P-ABC的外接球的半徑為2,且球心在點A,B,C所確定的平面上,則該正三棱錐的表面積是( 。
A.3$\sqrt{2}$+3B.3($\sqrt{15}$+$\sqrt{3}$)C.3$\sqrt{15}$+3$\sqrt{2}$D.3($\sqrt{2}$+$\sqrt{3}$)

查看答案和解析>>

同步練習冊答案