2.將A,B,C,D,E,F(xiàn),G排成一排,要求A與B相鄰,C與D相鄰,E與F不相鄰,則共有288種不同的排法.

分析 把A與B,C與D分別捆綁在一起,各看作一個復(fù)合元素,和G全排,形成了4個空,將E與F插入到其中2個空中,問題得以解決.

解答 解:把A與B,C與D分別捆綁在一起,各看作一個復(fù)合元素,和G全排,形成了4個空,將E與F插入到其中2個空中,故有A22A22A33A42=288種,
故答案為:288.

點評 本題考查了排列組合中的相鄰于不相鄰問題,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知漸近線方程為y=±$\frac{2}{3}$x且經(jīng)過P(${\sqrt{6}$,2),求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知點A(x1,y1),D(x2,y2)(其中x1<x2)是曲線y2=4x(y≥0)上的兩點,A,D兩點在x軸上的射影分別為點B,C,且|BC|=2.
(Ⅰ)當點B的坐標為(1,0)時,求直線AD的斜率;
(Ⅱ)記△OAD的面積為S1,梯形ABCD的面積為S2,求證:$\frac{S_1}{S_2}$<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某醫(yī)學院將6名大學生分配到某醫(yī)院的3個科室實習,每個科室至少1人,則不同的分配方案的種數(shù)是( 。
A.360B.90C.540D.2160

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在數(shù)列{an}中,a1=2,an=2nan-1(n≥2),則數(shù)列的通項公式是( 。
A.an=2•2${\;}^{\frac{n(1+n)}{2}}$B.an=2${\;}^{\frac{n(1+n)}{2}}$C.an=2•2${\;}^{\frac{n(1+n)}{2}}$-1D.an=2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的四位數(shù).
(1)可組成多少個不同的四位數(shù)?
(2)可組成多少個不同的偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在△ABC中,已知a-b=4,a+c=2b,且最大角為120°,求△ABC的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,且$\frac{\overline{z}}{1+i}$=2+i,則復(fù)數(shù)z=1-3i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項公式; 
(2)令bn=3${\;}^{\frac{a_n}{2}}}$,求數(shù)列{bn}前n項和的公式.

查看答案和解析>>

同步練習冊答案