11.已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,且$\frac{\overline{z}}{1+i}$=2+i,則復(fù)數(shù)z=1-3i.

分析 根據(jù)復(fù)數(shù)的四則運(yùn)算,先求出$\overline{z}$,即可得到結(jié)論.

解答 解:由$\frac{\overline{z}}{1+i}$=2+i得$\overline{z}$=(1+i)(2+i)=1+3i,
則z=1-3i,
故答案為:1-3i.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)的計(jì)算,根據(jù)復(fù)數(shù)的四則運(yùn)算是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.有甲、乙兩個(gè)建材廠,都想投標(biāo)參加某重點(diǎn)建設(shè),為了對(duì)重點(diǎn)建設(shè)負(fù)責(zé),政府到兩建材廠抽樣檢查,他們從中各取等量的樣品檢查它們的抗拉強(qiáng)度指數(shù)如下:
X110120125130135.2
P0.10.20.40.10.2
Y100115125130145
P0.10.20.40.10.2
其中X和Y分別表示甲、乙兩廠材料的抗拉強(qiáng)度,在使用時(shí)要求抗拉強(qiáng)度不低于120,比較甲、乙兩廠材料哪一種穩(wěn)定性較好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.將A,B,C,D,E,F(xiàn),G排成一排,要求A與B相鄰,C與D相鄰,E與F不相鄰,則共有288種不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知Q={(x,y)|3x+y≤4,x≥0,y≥0},A={(x,y)|x≤y},若向區(qū)域Q內(nèi)隨機(jī)投入一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.過(guò)棱錐各側(cè)棱中點(diǎn)的截面叫做中截面,類比三角形中位線定理“A1B1∥AB且A1B1=$\frac{1}{2}$AB”,可得三棱錐中截面的性質(zhì)定理:截面A1B1C1∥截面ABC且截面A1B1C1的面積大于截面ABC的面積的$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{{a_{11}}+{a_{12}}}}{{{a_9}+{a_{10}}}}$=(  )
A.1+$\sqrt{2}$B.$\sqrt{2}$-1C.3+2$\sqrt{2}$D.3-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)若2Sn=3n+3.求{an}的通項(xiàng)公式;
(Ⅱ)若a1=1,an+1-an=2n(n∈N*),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿足:a1=2,an+1-2an=2n+1(n∈N*).
(I)求證:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(II)若bn=$\frac{{a}_{n}}{{2}^{n}}$•cos(n+1)π,求數(shù)列{bn}的前項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.將兩封信投入3個(gè)編號(hào)為1,2,3的信箱,用X,Y分別表示投入第1,2號(hào)信箱的信的數(shù)目,求(X,Y)的邊緣分布律,并判斷X與Y是否獨(dú)立.

查看答案和解析>>

同步練習(xí)冊(cè)答案