1.(2x-$\sqrt{x}$)8的展開式中,二項式系數(shù)最大的項的值等于1120,則實數(shù)x的值為1.

分析 求得通項公式Tr+1=${C}_{8}^{r}$•28-r•(-1)r•x${\;}^{8-\frac{r}{2}}$,r=0,1,2,…8,x≥0,由二項式系數(shù)的性質(zhì):中間項二項式系數(shù)最大,可得r=4,令第五項為1120,解方程可得x的值,注意舍去負(fù)值.

解答 解:(2x-$\sqrt{x}$)8的展開式中的通項公式為Tr+1=${C}_{8}^{r}$(2x)8-r(-$\sqrt{x}$)r
=${C}_{8}^{r}$•28-r•(-1)r•x${\;}^{8-\frac{r}{2}}$,r=0,1,2,…8,x≥0,
由二項式系數(shù)的性質(zhì),可得第五項的二項式系數(shù)最大,
即有${C}_{8}^{4}$•24•(-1)4•x6=1120,
即為70×16x6=120,解得x=1(-1舍去).
故答案為:1.

點評 本題考查二項式定理的運(yùn)用:求指定項,注意運(yùn)用通項公式和二項式系數(shù)的性質(zhì):中間項的二項式系數(shù)最大,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若數(shù)列{an}滿足:對任意的n∈N*,只有有限個正整數(shù)m使得am<n成立,記這樣的m的個數(shù)為bn,則得到一個新數(shù)列{bn}.例如,若數(shù)列{an}是1,2,3,…,n…,則數(shù)列{bn}是0,1,2,…,n-1,…現(xiàn)已知數(shù)列{an}是等比數(shù)列,且a2=2,a5=16,則數(shù)列{bn}中滿足bi=2016的正整數(shù)i的個數(shù)為22015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.∠AOB在平面α內(nèi),OC是α的斜線,OB為OC在平面α內(nèi)的射影,若∠COA=θ,∠COB=θ1,∠BOA=θ2,則cosθ、cosθ1、cosθ2三者之間滿足的關(guān)系為cosθ=cosθ1•cosθ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線的標(biāo)準(zhǔn)方程是y2=6x,
(1)求它的焦點坐標(biāo)和準(zhǔn)線方程,
(2)直線L過已知拋物線的焦點且傾斜角為45°,且與拋物線的交點為A、B,求AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線x2-ky2=1的一個焦點是($\sqrt{5}$,0),則k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法中正確的是( 。
A.數(shù)據(jù)4、6、6、7、9、4的眾數(shù)是4
B.一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)的方差的平方
C.數(shù)據(jù)3,5,7,9的標(biāo)準(zhǔn)差是數(shù)據(jù)6、10、14、18的標(biāo)準(zhǔn)差的一半
D.頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若cos100°=k,則tan(-80°)=(  )
A.-$\frac{\sqrt{1-{k}^{2}}}{k}$B.$\frac{\sqrt{1-{k}^{2}}}{k}$C.±$\frac{\sqrt{1-{k}^{2}}}{k}$D.k$\sqrt{1-{k}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)已知x>0,y>0,$\frac{1}{x}+\frac{2}{y+1}$=2,求2x+y的最小值.
(2)已知a>0,b>0,a+b=1,比較8-$\frac{1}{a}$與$\frac{1}+\frac{1}{ab}$的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,矩形OABC′是水平放置的一個平面圖形的直觀圖,其中OA′=6,OC′=2,則原圖形OABC的面積為(  )
A.24$\sqrt{2}$B.12$\sqrt{2}$C.48$\sqrt{2}$D.20$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案