對于函數(shù)f(x)=
sinx當sinx≥cosx
cosx當sinx<cosx
,下列命題正確的是( 。
A、值域[-1,1]
B、當且僅當x=2kπ+
π
2
,(k∈Z)取得最大值
C、最小正周期為π
D、當且僅當2kπ+π<x<2kπ+
2
,(k∈Z)時f(x)<0
考點:四種命題
專題:三角函數(shù)的圖像與性質
分析:根據(jù)題意,討論函數(shù)f(x)的定義域、值域,單調性與最值,從而得出正確的結論.
解答: 解:∵函數(shù)f(x)=
sinx當sinx≥cosx
cosx當sinx<cosx

∴當sinx≥cosx時,
π
4
+2kπ≤x≤
4
+2kπ,
sinx<cosx時,-
4
+2kπ<x<
π
4
+2kπ(k∈Z);
∴f(x)=
sinx,
π
4
+2kπ≤x≤
4
+2kπ
cosx,-
4
+2kπ<x<
π
4
+2kπ,k∈Z
,
∴f(x)的值域為[-
2
2
,1],A錯誤;
當x=
π
2
+2kπ或x=2kπ(k∈Z)時,f(x)取得最大值為1,∴B錯誤;
∵f(x+π)=
-sinx
-cosx
≠f(x),
∴f(x)不是以π為最小正周期的周期函數(shù),∴C錯誤;
當f(x)<0時,2kπ+π<x<2kπ+
2
(k∈Z),
又當2kπ+π<x<2kπ+
2
,(k∈Z)時,f(x)<0,∴D正確;
綜上,正確的命題是D.
故選:D.
點評:本題考查了三角函數(shù)的定義域、值域以及單調性與周期性的應用問題,解題時應熟記三角函數(shù)的性質,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

所有棱長都為2的正三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,設角A,B,C的對邊分別為a,b,c,且2acosC=2b-c.
(1)求角A的大;
(2)若a=
21
,b=4,求邊c的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

爸爸去哪兒節(jié)目組安排星娃們露營,村長要求,F(xiàn)eyman、楊陽洋、貝兒依次在A、B、C三處扎帳篷,AB=8米,BC=4米,AC=6米.現(xiàn)村長給多多一個難題,要求她安扎在B、C兩點連線段上的D點位置,∠ADC=60°,如圖所示,問多多與Feyman相距多少米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內角A,B,C的對邊分別為a,b,c,已知
m
=(b,-
3
sinB
3
),
n
=(cosC,c),a=
m
n

(1)求B;
(2)若b=
3
,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC的外接圓半徑r=
a2+b2
2
,將此結論類比到空間有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=2,對任意正整數(shù)n都有nan+1=2(n+1)an
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項的和Sn
(3)如果對于一切非零自然數(shù)n都有nan≥λ(Sn-2)恒成立,求實數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)對任意x,y∈R均有:f(x+y)+f(x-y)=2f(x)f(y)且f(x)不恒為零.則下列結論正確的是
 

①f(0)=0
②f(0)=1
③f(0)=0或f(0)=1
④函數(shù)f(x)為偶函數(shù)
⑤若存在實數(shù)a≠0使f(a)=0,則f(x)為周期函數(shù)且2a為其一個周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x∈Z|2≤2x≤16},B=(3,4,5},則A∩B=
 

查看答案和解析>>

同步練習冊答案