考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:(1)等差數(shù)列{an}中,由已知條件推導出7a1+35d=7m,從而得到a6=m,由此能求出t.
(2)把a4=a3+d,a5=a3+2d,a6=a3+3d,a7=a3+4d,代入a32+2a3a6+a5a7=12,得到a32+3a3d+2d2=3,由此能求出a4•a5的值.
解答:
解:(1)等差數(shù)列{an}中,
∵a1+a2+a3+a5+a8+a9+a14=7m,且m=at,
∴7a1+35d=7m,
∴7(a1+5d)=7m,
∴a6=m,
∴t=6.
(2)∵a4=a3+d,a5=a3+2d,a6=a3+3d,a7=a3+4d,
∵a32+2a3a6+a5a7=12,
∴a32+2a3(a3+3d)+(a3+2d)(a3+4d)=12,
∴a32+3a3d+2d2=3,
∵a4•a5=(a3+d)(a3+2d)=a32+3a3d+2d2=3.
故答案為:6,3.
點評:本題考查等差數(shù)列的性質(zhì)的應用,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的通項公式的靈活運用.