已知點(diǎn)(x,y)滿足
x≥0
y≥0
x+y≤1
,則u=y-x的最小值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.
解答: 解:由u=y-x得y=x+u,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分OAB):
平移直線y=x+z由圖象可知當(dāng)直線y=x+z經(jīng)過點(diǎn)B(1,0)時(shí),直線y=x+z的截距最小,
此時(shí)z也最。
將B(1,0)代入目標(biāo)函數(shù)z=y-x,
得z=0-1=-1.
故答案為:-1.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,過右焦點(diǎn)F且與x軸垂直的直線交橢圓于A,B兩點(diǎn),且|AB|=
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+t(t≠0)與橢圓C相交于M,N兩點(diǎn),直線AO平分線段MN,求△OMN的面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-x2+x+1在點(diǎn)(1,2)處的切線與函數(shù)g(x)=x2-x圍成的圖形的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
tan(
π
4
+α)cos2α
2cos2(
π
4
-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1=1-i(i是虛數(shù)單位,以下同)是關(guān)于x的實(shí)系數(shù)一元二次方程x2+ax+b=0的一個(gè)根,則實(shí)數(shù)a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(2x+
π
4
)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F1F2為直徑的圓交雙曲線某條漸近線于M、N兩點(diǎn),若∠MAN=135°,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,
(1)若a1+a2+a3+a5+a8+a9+a14=7m,且m=at,則t=
 

(2)若a32+2a3a6+a5a7=12,則a4a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
-
1
3x
12的展開式中,x3的系數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案