【題目】判斷下列四個(gè)命題:①直線在平面內(nèi),又在平面內(nèi),則、重合;②直線、相交,直線、相交,直線、相交,則直線、共面;③線、共面,直線、共面,則直線也共面;④線不在平面內(nèi),則直線與平面內(nèi)任何一點(diǎn)都可唯一確定一個(gè)平面;其中假命題是______.(寫(xiě)出所有假命題的序號(hào))

【答案】①②③④

【解析】

①兩個(gè)平面可能相交;②三角直線可能交于一點(diǎn),不一定共面,③線、相交,線、相交,直線可能異面,④直線不在面內(nèi),可能相交,如果取的點(diǎn)為交點(diǎn)則命題不成立.

①考慮平面相交,交線為,滿足直線在平面內(nèi),又在平面內(nèi),不能推出、重合,所以該命題是假命題;

②考慮長(zhǎng)方體中三條直線,任意兩條都相交,但它們不是共面,所以該命題是假命題;

共面,共面,而異面,所以該命題是假命題;

與平面相交,所以直線不在平面內(nèi),直線與平面內(nèi)的點(diǎn)不能確定平面,所以該命題是假命題.

故答案為:①②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓,圓.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求圓,的極坐標(biāo)方程;

(2)設(shè),分別為,上的點(diǎn),若為等邊三角形,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若方程所表示的曲線為,則下面四個(gè)選項(xiàng)中錯(cuò)誤的是( )

A.為橢圓,則B.是雙曲線,則其離心率有

C.為雙曲線,則D.為橢圓,且長(zhǎng)軸在軸上,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C經(jīng)過(guò)點(diǎn),其焦點(diǎn)為F,M為拋物線上除了原點(diǎn)外的任一點(diǎn),過(guò)M的直線lx軸、y軸分別交于A,B兩點(diǎn).

求拋物線C的方程以及焦點(diǎn)坐標(biāo);

的面積相等,證明直線l與拋物線C相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,過(guò)點(diǎn)C的直線與線段、分別相交于點(diǎn)M、N,若,;

1)求y關(guān)于x的函數(shù)解析式;

2)定義函數(shù)),點(diǎn)列)在函數(shù)的圖像上,且數(shù)列是以1為首項(xiàng),0.5為公比的等比數(shù)列,O為原點(diǎn),令,是否存在點(diǎn),使得?若存在,求出Q點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由;

3)設(shè)函數(shù)上的偶函數(shù),當(dāng)時(shí),,又函數(shù)的圖像關(guān)于直線對(duì)稱,當(dāng)方程)上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為,點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)M(1,0)的直線與橢圓C相交于A、B兩點(diǎn),設(shè)點(diǎn)N(3,2),記直線AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若公差為的無(wú)窮等差數(shù)列的前項(xiàng)和為,則下列說(shuō)法:(1)若,則數(shù)列有最大項(xiàng);(2)若數(shù)列有最大項(xiàng),則;(3)若數(shù)列是遞增數(shù)列,則對(duì)任意都有;(4)若對(duì)任意都有,則數(shù)列是遞增數(shù)列;其中正確的是______.(選序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,側(cè)棱底面,為棱的中點(diǎn),

(Ⅰ)求證:;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案