【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項(xiàng)和,證明: ≤Tn<1(n∈N+).
【答案】解:(Ⅰ)當(dāng)n=1時(shí),4a1=(a1+1)2 , 解得:a1=1, 當(dāng)n≥2時(shí),4Sn﹣1=(an﹣1+1)2 , 4Sn=(an+1)2 ,
兩式相減得:(an+an﹣1)(an﹣an﹣1﹣2)=0,
∵an>0,
∴an﹣an﹣1=2,
∴數(shù)列{an}是以2為公差,以1為首項(xiàng)的等差數(shù)列,
∴an=2n﹣1;
證明:(Ⅱ) = = ﹣ ,
∴Tn=(1﹣ )+( ﹣ )+( ﹣ )+…+( ﹣ ),
=1﹣ ,
∴Tn<1,
>0,
∴Tn≥T1= .
∴ ≤Tn<1(n∈N+)
【解析】(Ⅰ)當(dāng)n=1時(shí),即可求得a1=1,當(dāng)n≥2時(shí),4Sn﹣1=(an﹣1+1)2 , 4Sn=(an+1)2 , 兩式相減可得:(an+an﹣1)(an﹣an﹣1﹣2)=0,可知:an﹣an﹣1=2,數(shù)列{an}是以2為公差,以1為首項(xiàng)的等差數(shù)列,即可求得數(shù)列{an}的通項(xiàng)公式;(Ⅱ) = ﹣ ,根據(jù)“裂項(xiàng)法”即可求得Tn=1﹣ ,Tn<1,由Tn≥T1= .即可證明 ≤Tn<1(n∈N+).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形ABC中,A=60°,沿斜邊AC上的高BD,將△ABD折起到△PBD的位置,點(diǎn)E在線段CD上.
(1)求證:PE⊥BD;
(2)過點(diǎn)D作DM⊥BC交BC于點(diǎn)M,點(diǎn)N為PB中點(diǎn),若PE∥平面DMN,求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有個(gè)不同實(shí)數(shù)根,則n的值不可能為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣2cos2x,下面結(jié)論中錯(cuò)誤的是( )
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)的圖象關(guān)于x= 對稱
C.函數(shù)f(x)的圖象可由g(x)=2sin2x﹣1的圖象向右平移 個(gè)單位得到
D.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),圓的標(biāo)準(zhǔn)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)若射線與的交點(diǎn)為,與圓的交點(diǎn)為,且點(diǎn)恰好為線段的中點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 級優(yōu) | 級良 | 級輕度污染 | 級中度污染 | 級重度污染 | 級嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在年天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率.
(Ⅰ)請估算年(以天計(jì)算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計(jì)算);
(Ⅱ)該校年月、日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費(fèi)用元,出現(xiàn)級嚴(yán)重污染,需要凈化空氣費(fèi)用元,記這兩天凈化空氣總費(fèi)用為元,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com