已知曲線C的極坐標方程是ρ=4cosθ,以極點為平面直角坐標系的原點,極軸為x的正半軸,建立平面直角坐標系.則曲線C的普通方程為
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:根據(jù)直角坐標和極坐標的互化公式x=ρcosθ、y=ρsinθ,把所給曲線的極坐標方程化為直角坐標方程.
解答: 解:由于曲線C的極坐標方程是ρ=4cosθ,即ρ2=4ρcosθ,化為直角坐標方程為(x-2)2+y2=4,
故答案為:(x-2)2+y2=4.
點評:本題主要考查把極坐標方程化為直角坐標方程的方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C的方程可以表示為x2+y2-2x-4y+m=0,其中m∈R.
(1)若m=1,求圓C被直線x+y-1=0截得的弦長
(2)若圓C與直線l:x+2y-4=0相交于M、N兩點,且OM⊥ON(O為坐標原點),求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A、B是海面上位于東西方向相距5(3+
3
)海里的兩個觀測點.現(xiàn)位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發(fā)出求救信號.位于B點南偏西60°且與B相距20
3
海里的C點的救援船立即前往營救,其航行速度為30海里/小時.求救援船直線到達D的時間和航行方向.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓M過點A(-
3
,0)、B(
3
,0)、C(0,-3),且與y軸的正半軸交于點D.
(Ⅰ)求圓M的方程;
(Ⅱ)已知弦EF過原點O.
(。┤魘EF|=
15
,求EF所在的直線方程;
(ⅱ)若弦DF、CE與x軸分別交于P、Q兩點,求證:|OP|=|OQ|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的奇函數(shù)滿足:f(x)=f(x+4),則f(2012)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=AC,延長AB到D,使BD=AB,AB的中點E,則
CD
CE
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的各項均為正整數(shù),Sn為其前n項的和,對任意n∈N*,有an+1=
3an+5,an為奇數(shù)
an
2k
an為偶數(shù),其中k為使an+1為奇數(shù)的正整數(shù)
,則當a1=1時,S1+S2+S3+S4=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A是△ABC中的最小角,且cosA=
a-1
2
,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=x2-2x+3,則此函數(shù)圖象在點(2,3)處的切線方程為
 

查看答案和解析>>

同步練習冊答案