考點(diǎn):直線與平面垂直的判定
專題:證明題,空間位置關(guān)系與距離
分析:由已知先證明SH⊥AB,再證明SH⊥AC,由AB∩AC=A,即可證明SH⊥面ABC.
解答: 證明:∵SB⊥SC,SC⊥SA,SB∩SA=A,
∴SC⊥平面SAB,
∵AB?平面SAB,
∴SC⊥AB
∵AB⊥CH,AC∩CH=C
∴AB⊥平面SHC
∴AB⊥SH
同理可證SH⊥AC,
∵AB∩AC=A
∴SH⊥面ABC.
點(diǎn)評(píng):本題主要考察了直線與平面垂直的判定,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三個(gè)函數(shù):y=cosx、y=sinx、y=tanx,從中隨機(jī)抽出一個(gè)函數(shù),則抽出的函數(shù)式偶函數(shù)的概率為( 。
A、
1
3
B、0
C、
2
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為正方形,側(cè)面PDC是邊長(zhǎng)為4的正三角形且側(cè)面PDC⊥面ABCD,E為PC的中點(diǎn).
(Ⅰ)求證PA∥面EDB;
(Ⅱ)求異面直線PA與DE所成角的余弦值;
(Ⅲ)求點(diǎn)D到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(-2,1)引拋物線y2=4x的兩條切線,切點(diǎn)分別為A、B,F(xiàn)是拋物線的焦點(diǎn),則直線PF與直線AB的斜率之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在點(diǎn)M(1,f(1))處的切線方程為3x-y+1=0,且在x=
2
3
處有極值.
(1)求函數(shù)y=f(x)的解析式;  
(2)求函數(shù)y=f(x)的極大值與極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)點(diǎn)A(0,1)及B(0,-1),且與直線x+y-1=0相切.
(1)求圓C的方程;
(2)在x軸上是否存在點(diǎn)P(異于坐標(biāo)原點(diǎn)),使得對(duì)圓C上的任意一點(diǎn)M,
MP
MO
(O為坐標(biāo)原點(diǎn))的值均保持不變(即為同一常數(shù)),若存在,求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校組織同學(xué)們參加紅色七日游--還上夏令營(yíng)活動(dòng),如圖,海中小島A周圍20海里內(nèi)有暗礁,夏令營(yíng)的船只正向南航行,在B處測(cè)得小島A在船的南偏東30°;航行30海里后,在C處測(cè)得小島A在船的南偏東60°,如果此船不改變航向,繼續(xù)向南航行,有無(wú)觸礁危險(xiǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于直線上的任意點(diǎn)P(x,y),若點(diǎn)Q(4x+2y,x+3y)仍在此直線上,求此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos(ωx+
π
3
)在區(qū)間[0,2π]上恰有一個(gè)最大值1和一個(gè)最小值-1,ω的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案