20.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{a+2i}{1-i}$為純虛數(shù),則復(fù)數(shù)|z-1|=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\sqrt{5}$D.2

分析 根據(jù)純虛數(shù)的概念進(jìn)行化簡(jiǎn)求解即可.

解答 解:∵復(fù)數(shù)z=$\frac{a+2i}{1-i}$(a∈R)為純虛數(shù),
∴設(shè)復(fù)數(shù)z=$\frac{a+2i}{1-i}$=bi,(a∈R,b≠0),
則a+2i=bi(1-i)=b+bi,
則a=b且b=2,
則a=2,
∴z=2i,z-1=-1+2i,
∴|z-1|=$\sqrt{{(-1)}^{2}{+2}^{2}}$=$\sqrt{5}$,
故選:C.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)的有關(guān)概念,比較基礎(chǔ)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)拋物線y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1、F2為焦點(diǎn),離心率e=$\frac{1}{2}$的橢圓與拋物線的一個(gè)交點(diǎn)為$E(\frac{2}{3},\frac{{2\sqrt{6}}}{3})$;自F1引直線交拋物線于P、Q兩個(gè)不同的點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)記為M,設(shè)$\overrightarrow{{F_1}P}=λ\overrightarrow{{F_1}Q}$.
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若$λ∈[\frac{1}{2},1)$,求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}是公比為q(q>0)的等比數(shù)列,其中a4=1,且a2,a3,a3-2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn<16(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)拋物線y2=4x的焦點(diǎn)為F,則準(zhǔn)線與x軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),若點(diǎn)B在以A,C為直徑的圓上,則|AF|-|BF|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)在定義域x∈R上,是以5為周期的奇函數(shù),且f(-2)=1,則f(12)等于(  )
A.1B.-1C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在等差數(shù)列{an}中,首項(xiàng)a1=3,公差d=2,若某學(xué)生對(duì)其中連續(xù)10項(xiàng)迸行求和,在遺漏掉一項(xiàng)的情況下,求得余下9項(xiàng)的和為185,則此連續(xù)10項(xiàng)的和為200.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知i為虛數(shù)單位,復(fù)數(shù)z滿足zi=$\frac{3-i}{1+i}$,則復(fù)數(shù)z的模|z|=( 。
A.$\sqrt{3}$B.4C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}sin\frac{x}{4}cos\frac{x}{4}+{cos}^{2}\frac{x}{4}$.
(Ⅰ)若f(a)=$\frac{3}{2}$,求tan(a+$\frac{π}{3}$)的值;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,若f(A)=$\frac{1+\sqrt{3}}{2}$,試證明:a2+b2+c2=ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)x,y滿足約束條件:$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$的可行域?yàn)镸.若存在正實(shí)數(shù)a,使函數(shù)y=2asin($\frac{x}{2}$+$\frac{π}{4}$)cos($\frac{x}{2}$+$\frac{π}{4}$)的圖象經(jīng)過(guò)區(qū)域M中的點(diǎn),則這時(shí)a的取值范圍是$[\frac{1}{2cos1},+∞)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案