分析 先排除不是遺漏掉首項(xiàng)與末項(xiàng),從而設(shè)9項(xiàng)為an,an+1,an+2,…,an+m-1,an+m+1,an+m+2,…,an+9,從而可得10(2n+1)+90-2(m+n)-1=185,從而求得.
解答 解:若遺漏的是10項(xiàng)中的第一項(xiàng)或最后一項(xiàng),
則185=9•a中,故a中=20$\frac{5}{9}$(舍去);
故設(shè)9項(xiàng)為an,an+1,an+2,…,an+m-1,an+m+1,an+m+2,…,an+9,
其中(0<m<9,m∈N*)
故10an+$\frac{10•(10-1)}{2}$×2-am+n=185,
即10(2n+1)+90-2(m+n)-1=185,
故m=9n-43,
故n=5,m=2;
故10×a5+$\frac{10•(10-1)}{2}$×2=110+90=200;
故答案為:200.
點(diǎn)評(píng) 本題考查了等差數(shù)列的前n項(xiàng)和公式與通項(xiàng)公式的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 25xcm2 | B. | $\frac{77π}{2}$cm2 | C. | 77πcm2 | D. | 144πcm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ②③ | B. | ③④ | C. | ②⑤ | D. | ②③⑤ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com