5.在等差數(shù)列{an}中,首項(xiàng)a1=3,公差d=2,若某學(xué)生對(duì)其中連續(xù)10項(xiàng)迸行求和,在遺漏掉一項(xiàng)的情況下,求得余下9項(xiàng)的和為185,則此連續(xù)10項(xiàng)的和為200.

分析 先排除不是遺漏掉首項(xiàng)與末項(xiàng),從而設(shè)9項(xiàng)為an,an+1,an+2,…,an+m-1,an+m+1,an+m+2,…,an+9,從而可得10(2n+1)+90-2(m+n)-1=185,從而求得.

解答 解:若遺漏的是10項(xiàng)中的第一項(xiàng)或最后一項(xiàng),
則185=9•a,故a=20$\frac{5}{9}$(舍去);
故設(shè)9項(xiàng)為an,an+1,an+2,…,an+m-1,an+m+1,an+m+2,…,an+9,
其中(0<m<9,m∈N*
故10an+$\frac{10•(10-1)}{2}$×2-am+n=185,
即10(2n+1)+90-2(m+n)-1=185,
故m=9n-43,
故n=5,m=2;
故10×a5+$\frac{10•(10-1)}{2}$×2=110+90=200;
故答案為:200.

點(diǎn)評(píng) 本題考查了等差數(shù)列的前n項(xiàng)和公式與通項(xiàng)公式的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在△ABC中,∠C=90°,BC=8,AB=10,O為BC上一點(diǎn),以O(shè)為圓心,OB為半徑作半圓與BC邊、AB邊分別交于點(diǎn)D、E,連結(jié)DE.
(Ⅰ)若BD=6,求線段DE的長(zhǎng);
(Ⅱ)過(guò)點(diǎn)E作半圓O的切線,切線與AC相交于點(diǎn)F,證明:AF=EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.給出如圖所示的流程圖,若要使輸入的x值與輸出的y值相等,則這樣的x值的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.為使$\sqrt{cosx}$+lg(4-x2)有意義,x的取值范圍是[-$\frac{π}{2}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{a+2i}{1-i}$為純虛數(shù),則復(fù)數(shù)|z-1|=( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若圖中的三個(gè)直角三角形是一個(gè)體積為20cm3的幾何體的三視圖,則這個(gè)幾何體外接球的表面積為(  )
A.25xcm2B.$\frac{77π}{2}$cm2C.77πcm2D.144πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題p:27是2的倍數(shù),q:27是3的倍數(shù),則在p,¬q,p∧q,p∨q這四個(gè)命題中,真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}的通項(xiàng)公式為an=n(n+4)($\frac{2}{3}$)n,若數(shù)列最大項(xiàng)為ak,則k=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列五個(gè)命題:
①直線l的斜率k∈[-1,1],則直線l的傾斜角的范圍是$α∈[{-\frac{π}{4},\frac{π}{4}}]$;
②直線l:y=kx+1與過(guò)A(-1,5),B(4,-2)兩點(diǎn)的線段相交,則k≤-4或$k≥-\frac{3}{4}$;
③如果實(shí)數(shù)x,y滿足方程(x-2)2+y2=3,那么$\frac{y}{x}$的最大值為$\sqrt{3}$;
④直線y=kx+1與橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共點(diǎn),則m的取值范圍是m≥1;
⑤方程x2+y2+4mx-2y+5m=0表示圓的充要條件是$m<\frac{1}{4}$或m>1;
正確的是( 。
A.②③B.③④C.②⑤D.②③⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案