分析 連接OA,OB,由已知條件得,△ADE∽△OAE,△BED∽△OEC,從而得O,C,B,D四點共圓,由此能求出結果.
解答 解:如圖所示,
連接OA,OB,∵AE是⊙O切線,∴∠OAE=90°;
∵AD⊥OE,∴∠ADE=90°=∠OAE,
又∵∠AED=∠OEA,
∴△ADE∽△OAE,
∴$\frac{DE}{AE}$=$\frac{AE}{OE}$,
∴AE2=DE•OE;
又AE2=BE•CE,∴DE•OE=BE•CE,
∴$\frac{DE}{BE}$=$\frac{CE}{OE}$;
又∵∠BED=∠OEC,∴△BED∽△OEC,
∴∠BDE=∠OCE,∴O,C,B,D四點共圓,
∵OB=OC,∴∠OBC=∠OCE,∴∠ODC=∠OBC,
∴∠ODC=∠BDE,
∴∠OEC=∠DBC-∠BDE=∠BDC-∠ODC=β-α.
故答案為:β-α.
點評 本題考查了角的求法問題,解題時要認真審題,注意三角形相似、四點共圓與三角形內(nèi)角和定理的合理運用,是綜合性題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com