7.f(x)是奇函數(shù),且滿足f(x+4)=f(x),當(dāng)0≤x≤1時(shí),f(x)=x,則f(7.5)的值為-0.5.

分析 由已知得f(7.5)=f(-0.5)=-f(0.5),由此能求出結(jié)果.

解答 解:∵f(x)是奇函數(shù),且滿足f(x+4)=f(x),
當(dāng)0≤x≤1時(shí),f(x)=x,
∴f(7.5)=f(-0.5)=-f(0.5)=-0.5.
故答案為:-0.5.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x=lnπ,y=log${\;}_{\frac{2}{3}}}$2,z=e${\;}^{-\frac{1}{2}}}$,則(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足a2-b2-c2+$\sqrt{3}$bc=0.則角A的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知=${∫}_{1}^{e}\frac{6}{x}$dx,那么(x2-$\frac{1}{x}$)n的展開式中的常數(shù)項(xiàng)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知冪函數(shù)y=f(x)過點(diǎn)(2,$\frac{{\sqrt{2}}}{2}$),則y=f(x)的解析式為f(x)=${x}^{-\frac{1}{2}}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列四個(gè)命題:
①函數(shù)f(x)=1-2sin2$\frac{x}{2}$的最小正周期為2π;
②“x2-4x-5=0”的一個(gè)必要不充分條件是“x=5”;
③命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0,則命題“p∧(¬q)”是假命題;
④函數(shù)f(x)=x3-3x2+1在點(diǎn)(1,f(1))處的切線方程為3x+y-2=0.
其中正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若對任意實(shí)數(shù)x,不等式|x-3|+x-a>0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.a<0B.0<a<3C.a<3D.a>-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在等比數(shù)列{an}中,a1,a8是方程3x2+2x-6=0的兩個(gè)根,則a4•a5=( 。
A.-6B.-2C.$-\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=x2-2x+m,在區(qū)間[-2,4]上隨機(jī)取一個(gè)實(shí)數(shù)x,若事件“f(x)<0”發(fā)生的概率為$\frac{2}{3}$,則m=-3.

查看答案和解析>>

同步練習(xí)冊答案