【題目】設(shè)為奇函數(shù),為常數(shù).
(1)求證:是上的增函數(shù);
(2)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)取值范圍.
【答案】(1)證明見解析;(2)
【解析】
(1)由奇函數(shù)的定義域關(guān)于原點對稱可得,,即,則令,得到的根必為相反數(shù),從而求出a,再根據(jù)定義法證明是上的增函數(shù)即可;
(2)由題意知,時恒成立,令,根據(jù)單調(diào)性的運算可判斷的單調(diào)性,從而求出最值.
(1)∵是奇函數(shù),∴定義域關(guān)于原點對稱,
由,得.令,得,,
∴,解得,,令,
設(shè)任意,且,則,
∵,∴,,,∴,即.
∴是減函數(shù),又為減函數(shù),
∴在上為增函數(shù);
(2)由題意知,時恒成立,
令,,
由(2)知在上為增函數(shù),又在上也是增函數(shù),
故在上為增函數(shù),∴的最小值為,
∴,故實數(shù)的范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為,且過點.
(1)求橢圓的方程;
(2)若不經(jīng)過點的直線與交于兩點,且直線與直線的斜率之和為,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù),點、分別是的圖象與軸、軸的交點,、分別是的圖象上橫坐標為、的兩點,軸,且、、三點共線.
(1)求函數(shù)的解析式;
(2)若,,求;
(3)若關(guān)于的函數(shù)在區(qū)間上恰好有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù)是函數(shù)的反函數(shù).
求函數(shù)的解析式,并寫出定義域;
設(shè),判斷并證明函數(shù)在區(qū)間上的單調(diào)性:
若中的函數(shù)在區(qū)間內(nèi)的圖像是不間斷的光滑曲線,求證:函數(shù)在區(qū)間內(nèi)必有唯一的零點(假設(shè)為),且.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)滿足對于任意實數(shù),都有,且當時,,.
(1)判斷的奇偶性并證明;
(2)判斷的單調(diào)性,并求當時,的最大值及最小值;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】實力相等的甲、乙兩隊參加乒乓球團體比 賽,規(guī)定5局3勝制(即5局內(nèi)誰先贏3局就算勝出并停止比賽).
⑴試求甲打完5局才能取勝的概率.
⑵按比賽規(guī)則甲獲勝的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018安徽江南十校高三3月聯(lián)考】線段為圓: 的一條直徑,其端點, 在拋物線: 上,且, 兩點到拋物線焦點的距離之和為.
(I)求直徑所在的直線方程;
(II)過點的直線交拋物線于, 兩點,拋物線在, 處的切線相交于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為.
(Ⅰ)求曲線的直角坐標方程與直線的參數(shù)方程;
(Ⅱ)設(shè)直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)M為滿足下列條件的函數(shù)構(gòu)成的集合,存在實數(shù),使得.
(1)判斷是否為M中的元素,并說明理由;
(2)設(shè),求實數(shù)a的取值范圍;
(3)已知的圖象與的圖象交于點,,證明:是中的元素,并求出此時的值(用表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com