2.如圖,長方形ABCD的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記∠BOP=x.將動點P到A,B兩點距離之和表示為x的函數(shù)f(x),則y=f(x)的圖象大致為( 。
A.B.C.D.

分析 根據(jù)函數(shù)圖象關(guān)系,利用排除法進(jìn)行求解即可.

解答 解:當(dāng)0≤x≤$\frac{π}{4}$時,BP=tanx,AP=$\sqrt{A{B}^{2}+B{P}^{2}}$=$\sqrt{4+ta{n}^{2}x}$,
此時f(x)=$\sqrt{4+ta{n}^{2}x}$+tanx,0≤x≤$\frac{π}{4}$,此時單調(diào)遞增,
當(dāng)P在CD邊上運動時,$\frac{π}{4}$≤x≤$\frac{3π}{4}$且x≠$\frac{π}{2}$時,
如圖所示,tan∠POB=tan(π-∠POQ)=tanx=-tan∠POQ=-$\frac{PQ}{OQ}$=-$\frac{1}{OQ}$,
∴OQ=-$\frac{1}{tanx}$,
∴PD=AO-OQ=1+$\frac{1}{tanx}$,PC=BO+OQ=1-$\frac{1}{tanx}$,
∴PA+PB=$\sqrt{(1-\frac{1}{tanx})^{2}+1}+\sqrt{(1+\frac{1}{tanx})^{2}+1}$,
當(dāng)x=$\frac{π}{2}$時,PA+PB=2$\sqrt{2}$,
當(dāng)P在AD邊上運動時,$\frac{3π}{4}$≤x≤π,PA+PB=$\sqrt{4+ta{n}^{2}x}$-tanx,
由對稱性可知函數(shù)f(x)關(guān)于x=$\frac{π}{2}$對稱,
且f($\frac{π}{4}$)>f($\frac{π}{2}$),且軌跡為非線型,
排除A,C,D,
故選:B.

點評 本題主要考查函數(shù)圖象的識別和判斷,根據(jù)條件先求出0≤x≤$\frac{π}{4}$時的解析式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x∈R,則函數(shù)f(x)=3-3sinx-cos2x的最大值,最小值分別為( 。
A.最小值為0,無最大值B.最小值為0,最大值為6
C.最小值為-$\frac{1}{4}$,無最大值D.最小值為-$\frac{1}{4}$,最大值為6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F(xiàn)={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素個數(shù),則 card(E)+card(F)=( 。
A.200B.150C.100D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某工件的三視圖如圖所示,現(xiàn)將該工件通過切削,加工成一個體積盡可能大的正方體新工件,并使新工件的一個面落在原工件的一個面內(nèi),則原工件材料的利用率為(材料利用率=$\frac{新工件的體積}{原工件的體積}$)(  )
A.$\frac{8}{9π}$B.$\frac{8}{27π}$C.$\frac{24(\sqrt{2}-1)^{3}}{π}$D.$\frac{8(\sqrt{2}-1)^{3}}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a3+a5+a7=( 。
A.21B.42C.63D.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F(xiàn)分別在A1B1,D1C1上,A1E=D1F=4,過點E,F(xiàn)的平面α與此長方體的面相交,交線圍成一個正方形.
(1)在圖中畫出這個正方形(不必說明畫法和理由);
(2)求直線AF與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}中,a1=1,an=an-1+$\frac{1}{2}$(n≥2),則數(shù)列{an}的前9項和等于27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知F是雙曲線C:x2-$\frac{{y}^{2}}{8}$=1的右焦點,P是C的左支上一點,A(0,6$\sqrt{6}$).當(dāng)△APF周長最小時,該三角形的面積為12$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間[0,1]上隨機(jī)取兩個數(shù)x,y,記p1為事件“x+y≤$\frac{1}{2}$”的概率,P2為事件“xy≤$\frac{1}{2}$”的概率,則( 。
A.p1<p2<$\frac{1}{2}$B.${p_1}<\frac{1}{2}<{p_2}$C.p2<$\frac{1}{2}<{p_1}$D.$\frac{1}{2}<{p_2}<{p_1}$

查看答案和解析>>

同步練習(xí)冊答案